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Abstract

In the last decade, concepts from functional programming have grown in importance
within the wider, non-functional programming community. Often it is recommended to
learn a purely functional programming language such as Haskell to become familiar with
these concepts. However, many programmers struggle with the double duty of learning a
new paradigm and a new syntax at the same time. This paper proposes that by learning
functional programming with a multi-paradigm programming language and a familiar
syntax it is possible to lower this effort.

To achieve this goal, the programming language Go has been chosen due to its syntactical
simplicity and familiarity. However, a downside of Go is the lack of a built-in list type, as
lists take a central role in functional programming. Although this is remediated by Go’s
slices, they are not accompanied by any higher-order list processing functions — ‘map’,
‘filter’, and ‘fold’ to name a few — that are present in every functional programming
language (and many other languages too). Due to the absence of polymorphism, in order
to provide these higher-order functions in a user-friendly way it is necessary to build these
functions into the compiler.

Furthermore, this paper adopts a definition of pure functional programming and introduces
‘funcheck’, a static code analysis tool that is designed to report constructs that are non-
functional.

In conclusion, I demonstrate that with the help of the newly built-in functions ‘fmap’,
‘filter’, ‘foldr’, ‘foldl’ and ‘prepend’, as well as ‘funcheck’ to lint code, Go proves itself to
be a suitable language for getting started with functional programming. The primary
factor for this is reflected in the Go idiom ‘clear is better than clever’. While functional
Go code is more verbose when compared to functional languages, it is also more obvious
about its inner workings. At the same time, it also illustrates why there is no way around
learning a language such as Haskell if fluency with functional programming concepts is
desired. The main reasons are that, although it may be unusual at first, Haskell’s syntax
is extremely concise, and that the language’s design — the type system, pattern matching,
the purity guarantees and more — provides a very effective toolset for purely functional
programming.
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Zusammenfassung

Innerhalb der letzten zehn Jahre haben Konzepte und Ideen aus dem funktionalen
Programmieren im Alltag von vielen Entwicklern Fuss gefasst. Häufig wird empfohlen,
eine rein funktionale Programmiersprache wie zum Beispiel Haskell zu lernen, um sich mit
diesen Konzepten vertraut zu machen. Viele haben jedoch Mühe, eine neue Syntax und
ein neues Paradigma gleichzeitig zu lernen. Das Ziel dieser Arbeit ist deswegen, mit Hilfe
einer multiparadigmatischen Programmiersprache mit bekannter Syntax einen einfacheren
Einstieg in funktionales Programmieren zu ermöglichen.

Um dieses Ziel zu erreichen, wurde die Programmiersprache Go aufgrund ihrer syntak-
tischen Simplizität und Vertrautheit gewählt. Da Listen jedoch oft eine zentrale Rolle
im funktionalen Programmieren einnehmen, ist ein Nachteil dieser Wahl, dass Go keinen
eingebauten Datentyp für Listen besitzt. Zwar wird dieser Nachteil durch Go’s ‘Slices’
gemildert, jedoch fehlen viele Funktionen höherer Ordnung um mit Listen zu arbeiten —
‘map’, ‘filter’ und ‘reduce’, um einige zu nennen. Da Go’s Typensystem keinen Polymor-
phismus bietet, müssen diese Funktionen im Compiler implementiert werden, um eine
möglichst benutzerfreundliche Verwendung zu ermöglichen.

Zusätzlich dazu wird die Bedeutung von rein funktionalem Programmieren im Kontext
dieser Arbeit festgelegt und auf Basis dieser Definition das Code-Analyse Tool ‘funcheck’
entwickelt, welches nicht-funktionale Konstrukte im Programmcode meldet.

Mit den neuen eingebauten Funktionen ‘fmap’, ‘filter’, ‘foldr’, ‘foldl’ und ‘prepend’, sowie
dem Linter ‘funcheck’ erweist sich Go als geeignete Programmiersprache um einen einfachen
Einstieg in funktionales Programmieren zu ermöglichen. Der primäre Grund spiegelt
sich auch im Go Idiom ‘clear is better than clever’ wider. Obwohl funktionaler Go Code
länger ist als in funktionalen Sprachen, ist dieser auch einfacher nachzuvollziehen. Des
Weiteren zeigt die Arbeit aber auch, dass es keine Alternative zu einer rein funktionalen
Sprache wie Haskell gibt, um sich funktionales Programmieren vollständig anzueignen.
Haskell’s zwar ungewöhnliche, aber prägnante Syntax sowie das Design der Sprache —
das Typensystem, Pattern Matching, die Reinheitsgarantien und vieles mehr — bilden
hierfür eine solide und oft verwendete Grundlage.
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Preface

As a part of my bachelor studies, I chose to attend a course on functional programming.
Having worked with Go for the last 3 years, first-class and higher-order functions were
not particularly new ideas to me. However, learning Haskell was, at the beginning,
overwhelming.

I decided to rewrite the exercises that I did not understand in Go. The result was more
verbose; usually roughly two to three times the lines of code for the same algorithm.
However, after writing the Go version, I understood not only the Go version, but also the
Haskell version.

After doing this several times, I realised that I was constantly rewriting the same higher-
order functions with different types, but more or less the same implementation. Thus,
the idea of adding them as built-ins came up.

‘Funcheck’ then came into play when I wanted to build something in Go first and later
rewrite it in Haskell. It was hard to tell whether it was purely functional, but it needed
to be in order to be easier to write the implementation in Haskell.

This thesis is written based on my own struggles I had with Haskell, and it is my hope
that someday, someone may benefit from the work done in this thesis.

Special thanks to:

My supervisors Gerrit Burkert and Karl Rege for their support and guidance, Tom
Whiston for proofreading this thesis and improving my English, Eva Kuske for the
consultation on writing and my employer nine for their flexible work hours.
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1 Introduction

1.1 Learning Functional Programming

Within the last decade, concepts from functional programming have been brought into
the daily life of almost every programmer. There are many events that contributed to
this gain in popularity:

In 2007, C# 3.0 was released, which introduced lambda expressions and laid the founda-
tions for turning C# into a hybrid Object-Oriented / Functional language[1]. Two years
later, Ryan Dhal published the initial version of Node.js, eliminating JavaScript’s ties
to the browser and introducing it as a server-side programming language, increasing the
adoption of JavaScript further. In 2013, Java 8 was released and brought support for
lambda expressions and streams. Within the same time frame, Python has been rapidly
growing in popularity[2].

Further, many new multi-paradigm programming languages have been introduced, in-
cluding Rust, Kotlin, Go and Dart. They all have functions as first-class citizens in the
language since their initial release.

With these developments, it can be said that functional programming has emerged from
niche use-cases and academia to truly arrive in the wider programming community. For
example Rust, the ‘most popular programming language’ for 5 years in a row (2016–2020)
according to the Stack Overflow Developer survey[3], has been significantly influenced by
functional programming languages[4]. Further, in idiomatic Rust code, a functional style
can be clearly observed1.

Learning a purely functional programming language increases fluency with these concepts
and teaches a different way to think and approach problems when programming. Due
to this, many people recommend learning a functional programming language[5][6][7][8],
even if one may not end up using that language at all[9].

Most literature about functional programming, including academia and online resources
like blogs, contain code examples written in Haskell. Further, according to the Tiobe
Index[10], Haskell is also the most popular purely functional programming language[11].

1A simple example for this may be that variables are immutable by default.
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1.2 Haskell

Haskell, the lingua franca amongst functional programmers, is a lazily-evaluated, purely
functional programming language. While Haskell’s strengths stem from all it’s features
like its advanced type system, pattern matching and more, these features are also what
makes Haskell famously hard to learn[12][13][14][15].

Beginner Haskell programmers face a very distinctive challenge in contrast to learning
a new, non-functional programming language: Not only do they need to learn a new
language with an unusual syntax (compared to imperative or object-oriented languages),
they also need to change their way of thinking and reasoning about problems. For example,
the renowned quicksort-implementation from the Haskell Introduction Page[16]:

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)

where
lesser = filter (< p) xs
greater = filter (>= p) xs

Source Code 1.1: Quicksort implementation in Haskell

While this is only a very short and clean piece of code, these 6 lines already pose many
challenges to non-experienced Haskellers:

– The function’s signature with no ‘fn’ or ‘func’ statement as they often appear in
imperative languages

– The pattern matching, which would be a ‘switch’ statement or a chain of ‘if / else’
conditions

– The deconstruction of the list within the pattern matching

– The functional nature of the program, passing ‘(< p)’ (a function returning a
function) to another function

– The function call to ‘filter’ without parenthesised arguments and no clear indicator
at which arguments it takes and which types are returned

Although some of these constructs also exist in imperative or object-oriented languages,
the cumulative difference is not to underestimate and adds to Haskell’s steep learning
curve.
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1.3 Goals

As demonstrated in the example above, learning a new paradigm and syntax at the same
time can be daunting and discouraging for novices. The entry barrier for functional
programming should be lowered by using a modern, multi-paradigm language with a clear
and familiar syntax. The functional programming beginner should be able to focus on
the paradigm first, and then change to a language like Haskell to fully get into functional
programming.

To achieve this goal, this thesis will consist of two parts. In the first part, writing functional
code will be made as easy as possible. This means that a programming language with
an easy and familiar syntax should be chosen. Optimally, this language should already
support functions as first-class citizens. Additionally, it should be statically typed, as
a static type system makes it easier to reason about a program and can support the
programmer while writing code. In the second part, a linter will be created to check code
for non-functional statements. To achieve this, a definition of what functional purity
means has to be selected and a ruleset has to be worked out and implemented into a
static analysis tool.

1.4 Why Go

The language of choice for this task is Go, a statically typed, garbage-collected program-
ming language designed at Google in 2009[17]. With its strong syntactic similarity to C,
it should be familiar to most programmers.

Go strives for simplicity and its syntax is extremely small and easy to learn. For example,
the language consists of only 25 keywords and purposefully omits constructs like the
ternary operator (<bool> ? <then> : <else>) as a replacement for the longer ‘if <bool>
{ <then> } else { <else> }’ for clarity. ‘A language needs only one conditional control
flow construct’[18], and this also holds true for many other constructs. In Go, there is
usually only one way to express something, improving the clarity of code.

Due to this clarity and unambiguity, the language is a perfect fit to grasp the concepts
and trace the inner workings of functional programming. It should be easy to read code
and understand what it does without a lot of experience with the language.

There are however a few downsides of using Go. Currently, Go does not have polymorphism,
which means that functions always have to be written with specific types. Due to this,
Go also does not include common list processing functions like ‘map’, ‘filter’, ‘reduce’ and
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more2. Further, Go does not have a built-in ‘list’ datatype. However, Go’s ‘slices’ cover a
lot of use cases for lists already. Section 2.1 covers this topic in more detail.

1.5 Existing Work

With Go’s support of some functional aspects, patterns and best practices have emerged
that make us of functional programming constructs. For example, in the net/http package
of the standard library, the function

func HandleFunc(pattern string, handler func(ResponseWriter, *Request))

is used to register functions for http server handling[19]:

func myHandler(w http.ResponseWriter, r *http.Request) {
// Handle the given HTTP request

}

func main() {
// register myHandler in the default ServeMux
http.HandleFunc("/", myHandler)
http.ListenAndServe(":8080", nil)

}

Source Code 1.2: Go web server handler function

Using functions as function parameters or return types is a commonly used feature in
Go, not just within the standard library. Furthermore, design patterns have emerged
within the community that use functional concepts. An example of this are ‘functional
options’.

1.5.1 Functional Options

The ‘functional options’ pattern has been outlined in Dave Cheney’s blog post ‘Functional
options for friendly APIs’[20] and is a great example on how to use the support for
multiple paradigms. The basic idea with functional options is that a type constructor
receives an unknown (0-n) amount of options:

2Although Go does have some polymorphic functions like ‘append’, these are specified as built-in
functions in the language and not user-defined
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func New(requiredSetting string, opts ...option) *MyType {
t := &MyType{

setting: requiredSetting,
featureX: false,

}

for _, opt := range opts {
opt(t)

}

return t
}

type option func(t *MyType)

Source Code 1.3: Constructor with functional options

These options can then access the instance of MyType to modify it accordingly, for
example:

func EnableFeatureX() option {
return func(t *MyType) {

t.featureX = true
}

}

Source Code 1.4: Example for a functional option

To enable feature X, ‘New’ can be called with that option:

t := New("required", EnableFeatureX())

With this pattern, it is easy to introduce new options without breaking old usages of the
API. Furthermore, the typical ‘config struct’ pattern can be avoided and meaningful zero
values can be set.

A more extensive example on how functional options are implemented and used can be
found in Appendix 2.

In summary

– Functional options let you write APIs that can grow over time.
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– They enable the default use case to be the simplest.

– They provide meaningful configuration parameters.

– Finally they give you access to the entire power of the language to initialize
complex values.

[20]

While this is a great example of what can be done with support for functional concepts,
a purely functional approach to Go has so far been discouraged by the core Go team,
which is understandable for a multi-paradigm programming language. However, multiple
developers have already researched and tested Go’s ability to do functional programming.

1.5.2 Functional Go?

In his talk ‘Functional Go’[21], Francesc Campoy Flores analysed some commonly used
functional language features in Haskell and how they can be copied to Go. Ignoring speed
and stack overflows due to non-existent tail call optimisation[22], the main issue is with
the type system and the missing polymorphism.

1.5.3 go-functional

In July 2017, Aaron Schlesinger, a Go programmer for Microsoft Azure, gave a talk
on functional programming with Go. He released a repository[23] that contains ‘core
utilities for functional Programming in Go’. The project is currently unmaintained, but
showcases functional programming concepts like currying, functors and monoids in Go.
In the ‘README’ file of the repository, he also states that:

Note that the types herein are hard-coded for specific types, but you could use
code generation to produce these FP constructs for any type you please! [24]

1.6 Verdict

The aforementioned projects showcase the main issue with functional programming in
Go: the missing helper functions that are prevalent in functional languages and that they
currently cannot be implemented in a generic way.

To make functional programming more accessible in Go, this thesis will research what
the most used higher-order functions are and implement them with a focus on usability.
Furthermore, to learn purely functional programming, a list of rules for pure functional
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code should be curated and implemented in a static code analysis tool. This tool can
then be used to check existing code and report constructs that are not functional.
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2 About Go

This chapter introduces the core concepts in Go that are needed to follow this paper. Go
is a language similar to C, although with a few minor, but important differences. First,
Go is garbage collected, meaning that the programmer does not need to allocate and
free memory1. Secondly, Go does not allow for pointer arithmetic. ‘Without pointer
arithmetic it’s possible to create a language that can never derive an illegal address that
succeeds incorrectly’[25].

Further, Go provides a built-in data type that does not exist in plain C: slices.

2.1 Go Slices

As mentioned in Section 1.4, Go does not have a ‘list’ implementation and lists are rarely
used. The reason for this is twofold. Firstly, as Go does not have polymorphism, it is not
possible for users to implement a generic ‘list’ type that would work with any underlying
type. Secondly, the Go authors added ‘slices’ as a core type to the language. From a
usage perspective, lists would not add anything compared to slices.

Go’s Slices can be viewed as an abstraction over arrays, to mitigate some of the weaknesses
of arrays when compared to lists.

Arrays have their place, but they’re a bit inflexible, so you don’t see them too
often in Go code. Slices, though, are everywhere. They build on arrays to
provide great power and convenience.[26]

Slices can be visualised as a ‘struct’ over an array:

// NOTE: this type does not really exist, it
// is just to visualise how they are implemented.
type Slice struct {

// the underlying "backing store" array
array *[]T

1although allocating memory is possible with the new built-in function
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// the length of the slice / view on the array
len int
// the capacity of the array from the
// starting index of the slice
cap int

}

With the ‘append’ function, elements can be added to a slice. Should the underlying array
not have enough capacity left to store the new elements, a new array will be created and
the data from the old array will be copied into the new one. This happens transparently
to the user.

2.1.1 Using Slices

‘head’, ‘tail’ and ‘last’ operations can be done with index expressions:

// []<T> initialises a slice, while [n]<T> initialises an
// array, which is of fixed length n. We're only working
// with slices here.
s := []string{"first", "second", "third"}
head := s[0]
tail := s[1:]
last := s[len(s)-1]

Adding elements or joining slices is achieved with ‘append’:

s := []string{"first", "second"}
s = append(s, "third", "fourth")
t := []string{"fifth", "seventh"}
s = append(s, t...)
// to prepend an element, one has to create a
// slice out of that element
s = append([]string{"zeroth"}, s...)

Append is a variadic function, meaning it takes n elements. If the slice is of type []T,
the appended elements have to be of type T.
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To join two lists, the second list is expanded into variadic arguments.

More complex operations like removing elements, inserting elements in the middle or
finding elements in a slice require helper functions, which have also been documented in
Go’s Slice Tricks[27].

2.1.2 What is missing from Slices

This quick glance at slices should clarify that, though the runtime characteristics of lists
and slices can differ, from a usage standpoint, what is possible with lists is also possible
with slices.

In a typical program written in a functional language, lists take a central role2. Because
of this, functional languages have a number of helper functions like ‘map’, ‘filter’ and
‘fold’[29] to modify and work on lists. These so called ‘higher order functions’ currently
do not exist in Go and would need to be implemented by the programmer. With no
support for polymorphism, a different implementation would need to be written for every
slice-type that is used. The type []int (read: a slice of integers) differs from []string,
which means that a possible ‘map’ function would have to be written once to support
slices of integers, once to support slices of strings, and a combination of these two:

func mapIntToInt(f func(int) int, []int) []int
func mapIntToString(f func(int) string, []int) []string
func mapStringToInt(f func(string) int, []string) []int
func mapStringToString(f func(string) string, []string) []string

With 7 base types (eliding the different ‘int’ types like ‘int8’, ‘uint16‘, ‘int16’, etc.), this
would mean 72 = 49 map functions just to cover the base types. Counting the different
numeric types into that equation (totally 19 distinct types[30]), would grow that number
to 192 = 361 functions.

Though this code could be generated, it misses user-defined types which would still need
to be generated separately in a pre-compile step.

Another option, instead of having a function per type, would be that ‘map’ takes and
returns empty interfaces (interface{}). However, ‘the empty interface says nothing’[31].
The declaration of ‘map’ would be:

2Interestingly, there is no clear and direct answer as to why they do. One reason may be because they
are recursively defined and trivially to implement functionally. Further, they are easier to use than
arrays, where the programmer would need to track the index and bound of the array (imagine keeping
track of the indices in a recursive function)[28]
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func map(f func(interface{}) interface{}, interface{}) interface{}

This function header does not say anything about it’s types, which would mean that they
would need to be checked at runtime and handled gracefully. It would also require the
caller to do a type assertion after every call. Further, a slice of type T cannot simply be
converted or asserted to a slice of another type T2[32][33]. Because of this limitation, a
typical usage pattern of map would be:

s := []string{"hello", "world"}
var i []interface{}
for _, e := range s {

i = append(i, e)
}
// i is now populated and can be used.
r := map(someFunc, f)
// to convert it back to []string:
s = r.([]string)

This exemplifies why using the empty interface is not an option. Further, the function
could not really be type-checked at compile time, as there is no indication of which
argument’s type must be equal.

2.2 Built-in functions

To mitigate these issues, the most common list-operations (in Go slice-operations) will be
added as built-ins to the compiler, so that the programmer can use these functions on
every slice-type without any conversion or code generation being necessary.

The language specification defines what built-in functions are and which built-in functions
should exist:

Built-in functions are predeclared. They are called like any other function but
some of them accept a type instead of an expression as the first argument.

The built-in functions do not have standard Go types, so they can only appear
in call expressions; they cannot be used as function values.[34]
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For example, the documentation for the built-in append:

// The append built-in function appends elements to the end of a slice.
// ...
func append(slice []Type, elems ...Type) []Type

The documentation shows that the types supplied to append are not specified upfront.
Instead, they are resolved and checked during compilation of the program.

Thus, in order to have generic list processing functions, these functions need to be
implemented as built-ins in the compiler.

2.3 The Go Compiler

The Go programming language is defined by its specification[35], and not it’s implementa-
tion. As of Go 1.14, there are two major implementations of that specification; Google’s
self-hosting compiler toolchain ‘gc’, which is written in Go, and ‘gccgo’, a front end for
GCC, written in C++.

When talking about the Go compiler, what’s mostly referred to is ‘gc’3.

A famous, although not completely correct story tells about Go being designed while a
C++ program was compiling[36]. This is why one of the main goals when designing Go
was fast compilation times:

Finally, working with Go is intended to be fast: it should take at most a few
seconds to build a large executable on a single computer. To meet these goals
required addressing a number of linguistic issues: an expressive but lightweight
type system; concurrency and garbage collection; rigid dependency specification;
and so on. These cannot be addressed well by libraries or tools; a new language
was called for.[37]

Go has taken some measures to combat slow compilation times. In general, Go’s depen-
dency resolution is simpler compared to other languages, for example by not allowing
circular dependencies. Furthermore, compilation is not even attempted if there are unused
imports or unused declarations of variables, types and functions. This leads to less code to
compile and in turn shorter compilation times. Another reason is that ‘the ‘gc’ compiler
is simpler code compared to most recent compilers’[38]. However, according to Rob Pike,
one of the creators of Go, Go’s compiler is not notably fast, but most other compilers are
slow:

3‘gc’ stands for ‘go compiler’, and not ‘garbage collection’ (which is abbreviated as ‘GC’).

15



Functional Go

The compiler hasn’t even been properly tuned for speed. A truly fast compiler
would generate the same quality code much faster.[38]

The code generation with the ‘gc’ compiler is split into four phases:

2.3.1 Parsing Go programs

The first phase of compilation is parsing Go programs into a syntax tree. This is done
by tokenising the code (‘lexical analysis’ - the ‘lexer’), parsing (‘syntax analysis’ - the
‘parser’) it and then constructing a syntax tree (AST)4 for each source file.

Go has been designed to be easy to parse and analyse. For example, in contrast to
many other programming languages, Go does not require a symbol table to parse source
code.[40].

2.3.2 Type-checking and AST-transformation

The second phase of compilation starts by converting the ‘syntax’ package’s AST, created
in the first phase, to the compiler’s AST representation. This is due to historical reasons,
as gc’s AST definition was carried over from the C implementation.

After the conversion, the AST is type-checked. Within the type-checking, there are also
some additional steps included like checking for ‘declared and not used’ variables and
determining whether a function terminates.

After type-checking, transformations are applied on the AST. This includes eliminating
dead code, inlining function calls and escape analysis, to name a few. What is also done
in the transformation phase is rewriting built-in function calls, replacing for example
a call to the built-in ‘append’ with the necessary AST structure and runtime-calls to
implement its functionality.

2.3.3 SSA

In the third phase, the AST is converted to SSA form. SSA (Single Static Assignment) is
‘a lower-level intermediate representation with specific properties that make it easier to
implement optimizations and to eventually generate machine code from it’[41].

The conversion consists of multiple ‘passes’ through the SSA that apply machine-
independent rules to optimise code. These generic rewrite rules are applied on every

4Technically, the syntax tree is a syntax DAG[39]
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architecture and thus mostly concern expressions (for example replacing expressions with
constant values and optimising multiplications), dead code elimination and removal of
unneeded nil-checks.

2.3.4 Generating machine code

Lastly, in the fourth phase of the compilation, machine-specific SSA optimisations are
applied. These may include:

– Rewriting generic values into their machine-specific variants (for example, on amd64,
combining load-store operations)

– Dead-code elimination

– Pointer liveness analysis

– Removing unused local variables

After generating and optimising the SSA form, the code is passed to the assembler, which
replaces the so far generic instructions with architecture-specific machine code and writes
out the final object file[41].
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3 Methodology

3.1 Slice Helper Functions

3.1.1 Choosing the functions

As mentioned in the introduction, the goal is to make functional programming in Go
easier. To achieve this, the first task is to implement some helper functions for slices,
similar to those that exist for lists in Haskell. To decide on which functions will be
implemented, popular Haskell repositories on GitHub have been analysed. The popularity
of repositories was decided to be based on their number of stars. Out of all Haskell
projects on GitHub, the most popular are[42]:

– Shellcheck (koalaman/shellcheck[43]): A static analysis tool for shell scripts

– Pandoc (jgm/pandoc[44]): A universal markup converter

– Postgrest (PostgREST/postgrest[45]): REST API for any Postgres database

– Semantic (github/semantic[46]): Parsing, analyzing, and comparing source code
across many languages

– Purescript (purescript/purescript[47]): A strongly-typed language that compiles to
JavaScript

– Compiler (elm/compiler[48]): Compiler for Elm, a functional language for reliable
web apps

– Haxl (facebook/haxl[49]): A Haskell library that simplifies access to remote data,
such as databases or web-based services

In these repositories, the number of occurrences of popular list functions has been counted.
The analysis does not differentiate between different ‘kinds’ of functions. For example,
‘fold’ includes all occurrences of foldr, foldl and foldl'; ‘map’ also includes occurrences
of fmap. Further, the analysis has not been done with any kind of AST-parsing. Rather,
a simple ‘grep’ has been used to find matches. This means that it is likely to contain
some mismatches, for example in code comments. All in all, this analysis should only be
an indicator of what functions are used most.
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Running the analysis on the 7 repositories listed above, searching for a number of pre-
selected list functions, indicates that the most used functions are ‘:’ (cons), ‘map’ and
‘fold’, as shown in table 3.1.

‘:’ (cons) 2912

map, fmap 1873

foldr, foldl, foldl’ 303

filter 262

reverse 154

take 108

drop 81

maximum 45

sum 44

zip 38

product 15

minimum 10
Table 3.1: Occurrences of list functions1

Based on this information, it has been decided to implement the map, cons, fold and
filter functions into the Go compiler.

3.1.2 Map

The most used function in Haskell is map. The table 3.1 counts roughly 1250 occurrences
of map, although around 600 of those are from ‘fmap’. fmap is part of the Functor type
class2, which is described as ‘a type that can be mapped over’[50]. In general, a common
analogy of the Functor type class is a box. A functor is like a box where a value can be
put into and taken out again. fmap processes and transforms the item in that box. For
lists, this process means iterating over and processing every item within that list. For the
‘Maybe’ type it means ‘unpacking’ the concrete value and processing it, or if there is no
concrete value, returning ‘Nothing’ instead.

The map function is exactly like fmap but only works on lists:

1See Appendix 3 for how these results have been achieved
2type classes in Haskell are similar to interfaces in imperative and object-oriented languages
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map

returns a list constructed by applying a function (the first argument) to all
items in a list passed as the second argument[51].

Some usage examples of map can be seen at 3.1.

Prelude> :t map
map :: (a -> b) -> [a] -> [b]
Prelude> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f b
Prelude> map (*3) [1,2,3]
[3,6,9]
Prelude> fmap (*3) [1,2,3]
[3,6,9]
Prelude> map (++ " world") ["hello","goodbye"]
["hello world","goodbye world"]
Prelude> map show [1,2,3]
["1","2","3"]

Source Code 3.1: Example usage for map and fmap

Due to missing polymorphism, map cannot be implemented easily in Go. While a specific
definition of map would be

func map(f func(int) string, []int) []string

this definition would only hold true for the specific type combination int and string. A
more generic definition, similar to append, would be:

func map(f func(Type1) Type2, []Type1) []Type2

For this to work, the function has to be implemented as a built-in into the compiler.

As there is already a ‘map’ token in the Go compiler (for the map data type), the function
will be called ‘fmap’. However, compared to Haskell’s ‘fmap’, Go’s ‘fmap’ only works on
slices. This is due to the absence of an ‘functor’-like concept. Again, due to the absence
of polymorphism, this cannot realistically built into the language in this context.
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Nonetheless, to avoid possible naming confusions, the ‘map’ function in Go will be called
‘fmap’.

In Go, the usage of ‘fmap’ should result in making the program 3.2 behave as shown3.

package main

import (
"fmt"
"strconv"

)

func main() {
fmt.Printf("%#v", fmap(strconv.Itoa, []int{1, 2, 3}))

// []string{"1", "2", "3"}↪→

}

Source Code 3.2: Example usage of map in Go

3.1.3 Cons

The name cons has been introduced by LISP, where it describes a record structure
containing two components called the ‘car’ (the ‘contents of the address register’) and
the ‘cdr’ (‘content of decrement register’). Lists are built upon cons cells, where the ‘car’
stores the element and ‘cdr’ a pointer to the next cell - the next element of the list. This is
why in Lisp, (cons 1 (cons 2 (cons 3 (cons 4 nil)))) is equal to (list 1 2 3 4).
This list is also visualised in picture 3.1.

Figure 3.1: Cons cells forming a list[53]

The cons operator thus prepends an element to a list, effectively allocating a variable that
contains the newly added element and a pointer to the ‘old’ list. As a result, prepending

3Printf’s first argument, the verb ‘%#v’, can be used to print the type (‘#’) and the value (‘v’) of a
variable[52].
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to a list is computationally cheap, needing one allocation and one update.

In Haskell, the ‘name’ of the cons function is the ‘:’ operator. In Go, names for identifiers
(which includes function names) underlie a simple rule:

An identifier is a sequence of one or more letters and digits. The first character
in an identifier must be a letter.[54]

This rule forbids a function to be named ‘:’. Instead, the function could be named ‘cons’.
However, Go already has a function to add to the end of a slice, ‘append’. Thus, adding
to the beginning of a slice will be named ‘prepend’. Using prepend should be very similar
to append. The behaviour of ‘prepend’ should be equal to using ‘append’ with a slight
workaround4:

package main

import (
"fmt"
"strconv"

)

func main() {
fmt.Printf("%#v", append([]int{0},

[]int{1,2,3}...)// []int{0, 1, 2, 3}↪→

fmt.Printf("%#v", prepend(0, []int{1, 2, 3})) // []int{0, 1, 2, 3}
}

Source Code 3.3: Example usage of prepend in go

3.1.4 Fold

Fold, sometimes also named ‘reduce’ or ‘aggregate’, is another higher-order function that
is very commonly used in functional programming.

fold refers to a family of higher-order functions that analyze a recursive data
structure and through use of a given combining operation, recombine the results
of recursively processing its constituent parts, building up a return value.[55]

4This workaround is to create a slice containing the prepended element, and expanding the destination
slice with ‘...’, as append is a variadic function
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In other words, fold processes a list one by one and executes a ‘combining operation’ on
every element, for example summing up a list of integers.

The family of fold functions in Haskell consist of three different implementations of that
definition: foldr, foldl and foldl’. The difference between foldr and foldl is hinted at their
function headers:

Prelude Data.List> :t foldl
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
Prelude Data.List> :t foldr
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

Source Code 3.4: Function headers of the fold functions

The argument with type ‘b’ is passed as the first argument to the foldl function, and as
the second argument to foldr. As can be seen in the illustrations of foldl and foldr in 3.2,
the evaluation order of the two functions differ.

Figure 3.2: Folds illustrated[55]

This is most obvious when using an example where the function is not associative:

foldl (-) 0 [1..7]
((((((0 - 1) - 2) - 3) - 4) - 5) - 6) - 7 = -28
foldr (-) 0 [1..7]
1 - (2 - (3 - (4 - (5 - (6 - (7 - 0)))))) = 4

Source Code 3.5: foldr and foldl execution order

In foldl, the accumulator (‘0’) is added to the left end of the list (prepended), while with
foldr, the accumulator is added to the right end. For associative functions (e.g. ‘+’) this
does not make a difference, it does however for non-associative functions, as can be seen
in the example 3.5.

The difference between foldl and foldl’ is more subtle:
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foldl and foldl’ are the same except for their strictness properties, so if both
return a result, it must be the same.[56]

The strictness property is only relevant if the function is lazy in its first argument. If
this is the case, behavioural differences can be seen because foldl builds up a so called
‘execution path’ (nesting the called functions), while foldl’ executes these functions while
traversing it already. An example of this is illustrated in Appendix 6.

To keep things simpler, Go will only have its versions of foldl and foldr, which will both
be strict — the Haskell counterparts would thus be foldr and foldl’.5 The usage of these
fold-functions is equal to the Haskell versions, where foldl’s arguments are switched in
order.

package main

import "fmt"

func main() {
sub := func(x, y int) int { return x - y }
fmt.Printf("%v\n", foldr(sub, 100, []int{10, 20, 30})) // -80
fmt.Printf("%v\n", foldl(sub, 100, []int{10, 20, 30})) // 40

}

Source Code 3.6: Example usage of foldr and foldl in go

3.1.5 Filter

The filter function is the conceptually simplest higher-order function. It takes a list and
filters out all elements that are not matching a given predicate. This predicate usually is
a function that takes said element and returns a boolean if it should be kept or filtered.

A simple example:

5If the behaviour from the normal foldl function is required, a workaround can be applied in the Go
version. See Appendix 7
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package main

import "fmt"

func main() {
smallerThan5 := func(x int) bool {

return x < 5
}

fmt.Println(filter(smallerThan5, []int{1, 8, 5, 4, 7, 3}))
// [1, 4, 3]↪→

}

Source Code 3.7: Example usage of filter in Go

3.2 Functional Check

To learn functional programming without a purely functional language, the developer
needs to know which statements are functional and which would not exist or be possible
in a purely functional language. For this reason, a ‘functional checker’ should be created.
It should work in a similar fashion to linters like ‘shellcheck’, ‘go vet’ or ‘gosimple’6, with
different ‘rules’ that are reported upon. This tool will be named ‘funcheck’.

A set of rules should be compiled to identify common ‘non-functional’ constructs which
should then be reported upon.

The first step is to define a set of rules.

3.2.1 Functional Purity

The goal of funcheck is to report every construct that can not be considered to be purely
functional. As there is no agreed upon definition on what functional purity is[58], the
first step is to define functional purity for the context of this thesis:

A style of building the structure and elements of computer programs that treats
all computation as the evaluation of mathematical functions. Purely functional
programming may also be defined by forbidding changing state and mutable
data.

6A list of Go linters can be found in golangci-lint[57].
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Purely functional programming consists in ensuring that functions, inside the
functional paradigm, will only depend on their arguments, regardless of any
global or local state.[59]

This definition roughly brakes down into two parts; immutability and function purity.
These parts and how they translate to Go will be discussed in the following chapters.

3.2.2 Forbidding mutability and changing state

Immutability refers to objects — variables — that are unchangeable. This means that
their state cannot be modified after it’s creation and first assignment.

Many programming languages provide features for making variables immutable.

In Rust for example, variables are immutable by default. To explicitly declare a mutable
variable, the mut keyword has to be used: let mut x = 5;.

Java, in contrast, uses the final keyword:

A final variable can only be initialized once[60]

‘Only be initialized once’ means that it cannot be reassigned later, effectively making that
variable immutable. A caveat with Java’s final keyword is that the immutability is only
tied to the reference of that object, not it’s contents (one may still change a field of an
immutable object).

C and C++ have two features to achieve immutability, the #define preprocessor and
the const keyword. The #define directive does not declare variables, but rather works
in a similar way to string replacement at compile time. These directives can also be
expressions. For example, this is a valid define statement:

#define AGE (20/2)

However, because #define is just text substitution, these identifiers are untyped.

The const qualifier specifies that a variable’s value will not be changed, making it
immutable. This is effectively the equivalent to Java’s final.

Go has the const keyword too, and similar to C, constants can only be characters, strings,
booleans or numeric values7. A complex type — a struct, interface or function — cannot
be constant.

7In contrast to C, Go does have a boolean type
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This means that the programmer cannot write const x = MyStruct{A: a, B: b} to
make a struct immutable.

A solution to making variables immutable is to explicitly not allow any mutations in
a program, effectively disallowing all reassignments. To do this in Go, the simplest
solution is to disallow the assignment operator =, and only allow it in combination with a
declaration (:=).

This solution also has the side-effect that it makes it impossible to mutate existing,
complex data structures like maps and slices8.

There are additional operators that work in a similar way to the assignment operator, for
example ++, -- and +=. These are all ‘hidden’ assignments and will need to be reported
upon too.

Go being a copy by value language, mutating existing variables across functions works by
passing pointers to these variables9. When removing the regular assignment operators, the
usage of pointers becomes second nature, as it cannot be updated either way. Technically,
the only advantage that pointers have left, is that less memory has to be copied10 if a
variable’s type is big enough11. This optimisation is left to the developer.

In functional languages in contrast, this optimisation is usually left to the compiler and
there are no pointers at all in the language12.

A feature not discussed so far is shadowing. Shadowing a variable in a different scope is
still possible by redeclaring it. As expected, even with the above mentioned limitations,
the rules for shadowing variables do not change. This can be seen in Appendix 5.

3.2.3 Pure functions

A pure function is a function where the return value is only dependent on the arguments.
With the same arguments, the function should always return the same values. The
evaluation of the function is also not allowed to have any ‘side effects’, meaning that it
should not mutate non-local variables or references13.

8By not allowing assignments, elements can not be updated by s[0] = "zero" / m["key"] = "value".
9An example for this can be found in Appendix 4.

10The pointer still has to be passed, and thus copied, to the called function
11For example, it is cheaper to copy an int32 than to take address of it, copy that (64 bit, on most

systems) address and dereferencing it again
12Except for things like the ‘foreign function interface’ (FFI) in Haskell, which allows to call C functions

from Haskell code
13This also includes ‘local static’ variables, but Go does not have a way to make variables ‘static’.
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As discussed in the last Chapter 3.2.2, if reassignments are not allowed, mutating global
variables is not possible either.

If global state cannot be changed, it also cannot influence a function’s return values.

As such, forbidding reassignments is an extremely simple solution to ensure functional
purity within the program. However, there is one important aspect that the solution does
not solve: interacting with the outside world.

3.2.4 IO

Network and file access, time, randomness, user input and sensors are all examples of IO,
things that interact with state outside of the program.

Input and Output in a program — through whether channel it may be — is impure by
design. Due to this, the Haskell language authors faced a difficult challenge; how to add
impure functions to an otherwise completely pure language.

In a pure language, functions only depend on their arguments, have no side effects and
return a value computed from these arguments. Because of this, the execution order of
functions is not relevant, a function can be executed whenever its return value is needed.
Due to this, the compiler can optimise the code, calling the functions in a specific (or in
no specific) order or omitting calls if their return values are unused.

However, impure IO functions introduce some difficulties.

For example, one would expect that it is possible to write a trivial ‘writeFile’ function that
takes a filename and a string with the contents for that file with the function definition
roughly being:

writeFile :: String -> String

Supposed that this function could be called with writeFile "hello.txt" "Hello World".
The function does not return anything, or its return value, for example the number of
bytes that have been written to the file, is discarded on the call site.

As there is no dependency on that function anymore, the compiler assumes that this
function does not need to be executed at all — it still expects all functions to be pure
(even if this is not the case in this example). Being able to follow the purity guarantees,
the compiler emits the call to the writeFile function and the file never gets written.

Similarly, for getting user input:

28



Ramon Rüttimann

getChar :: Char

If this function is called multiple times, the compiler may reorder the execution of these
calls, again, because it expects the functions to be pure, so the execution order should
not matter:

get2Chars = [getChar, getChar]

However, in this example, execution order is extremely important.

To solve this problem, Haskell introduced the IO monad, in which all functions are
wrapped with a ‘RealWorld’ argument. So the getChar example would be written as14:

getChar :: RealWorld -> (Char, RealWorld)

This can be read as ‘take the current RealWorld, do something with it, and return a Char
and a (possibly changed) RealWorld’[61].

With this solution, the compiler cannot reorder or omit IO actions, ensuring the correct
execution of the program.

The IO monad is a sophisticated solution to work around the purity guarantees and
enables Haskellers to use impure functions in an otherwise completely pure language. Put
another way: the IO monad exists because of compiler optimisations, which in turn are
based on the assumption that everything is pure.

In Go, the compiler does not and can not make this assumption. There also is no ‘pure’
keyword to mark a function as such. For that reason, the compiler cannot optimise as
aggressively, and the whole IO problem does not exist. However, in the context of this
thesis, interacting with the outside world — using IO-functions — means that functional
purity cannot be guaranteed anymore. Haskell’s solution to this issue is relatively complex,
and while it may be applicable to Go, it would require massively rewriting Go’s standard
library. Furthermore, the IO monad does not make impure functions magically pure.
Rather, it clearly marks functions as impure.

Another issue, apart from the amount of work that would be needed, is that the goal is
to provide an easy introduction to functional programming. IO, as one may see in these
examples, is one of the hardest topics.
14This is not the actual function header for getChar, only an illustration. The actual function header of

getChar is getChar :: IO Char.
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For those reasons, although it may violate the functional purity requirements, the under-
lying issue with IO will be ignored. This means that the programmer will still be able to
use IO functions as in regular Go programs.

3.2.5 Assignments in Go

As described in Section 3.2.2, the only check that needs to be done is that there are no
reassignments in the code. There are a few exceptions to this rule, which will be covered
later. First, it is important to have a few examples and test cases to be clear on what
should be reported.

To declare variables in Go, the var keyword is used. The var keyword needs to be followed
by one or more identifiers and maybe types or the initial value. These are all valid
declarations:

var i int
var U, V, W float64
var k = 1
var x, y float32 = -1, -2

Source Code 3.8: Go Variable Declarations

What can be seen in this example is that the type of the variable can be deducted
automatically15, or be specified explicitly.

However, the notation var k = 1 is seldomly seen. This is due to the fact that there
is a second way to declare and initialise variables to a specific value, the ‘short variable
declaration’ syntax:

k := 1

It is shorthand for a regular variable declaration with initializer expressions
but no types:

"var" IdentifierList = ExpressionList .

[62]
15The compiler will infer the type at compile time. That operation is always successful, although it may

not be what the programmer desires. For example, var x = 5 will always result in x to be of type
int.
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In practice, the short variable declaration is used more often due to the fact that there is
no need to specify the type of the variable manually and is shorter than its counterpart
var x = y.

Go also has increment, decrement and various other operators to reassign variables. Most
of the operators that take a ‘left’ and ‘right’ expression also have a short-hand notation
to reassign the value back to the variable, for example16:

var x = 5
x += 5 // equal to x = x + 5
x %= 3 // equal to x = x % 3
x <<= 2 // equal to x = x << 2 (bit-shift)

Source Code 3.9: Go Assignment Operators

All these operators are reassigning values and should be reported.

However, as mentioned in the beginning of this chapter, there are a few exceptions to
this rule:

Function Assignments

A variable declaration brings an identifier into scope. The Go Language Specification
defines this scope according to the following rule:

The scope of a constant or variable identifier declared inside a function begins
at the end of the ConstSpec or VarSpec (ShortVarDecl for short variable
declarations) and ends at the end of the innermost containing block. [64]

This definition holds an important caveat for function definitions:

The scope [...] begins at the end of the ConstSpec or VarSpec [...].

This means that when defining a function, the functions identifier is not in scope within
that function:

16This is a non-exhaustive list of operators. A complete listing of operators can be found in the Go
language spec[63].
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func X() {
f := func() {

f() // <- 'f' is not in scope yet.
}

}

Source Code 3.10: Go scoping issue with recursive functions

In the above example, the function f cannot be called recursively. This is due to the fact
that the identifier f is not in scope at f’s definition. Instead, it only enters scope after
the closing brace of function f.

This cannot be changed within the compiler without touching a lot of the scoping rules
and changing these scoping rules may have unintended side effects. To exemplify, a naive
solution to the issue would be to bring the identifier into scope right after the assignment
operator (=). However, this would introduce further edge cases, as for example x := x,
and extra measures would have to be taken to make such constructs illegal again.

However, there is a simple, although verbose solution to this problem: The function has
to be declared in advance:

func X() {
var f func() // f enters scope after this line
f = func() {

f() // this is allowed, as f is in scope
}

}

Source Code 3.11: Fixing the scope issue on recursive functions

This exception will need to be allowed by the assignment checker, as recursive functions
are one of the building blocks in functional programming.

Multiple Assignments

As discussed at the beginning of this Chapter, the short variable declaration brings a
variable into scope and assigns it to a given expression (value). It is also possible to
declare multiple variables at once, as can be seen in the EBNF notation:
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ShortVarDecl = IdentifierList ":=" ExpressionList .

This clearly shows that both left- and right-hand side take a list, meaning one or more
elements, making a statement like x, y := 1, 2 valid17.

However, there is an important note to be found in the language specification:

Unlike regular variable declarations, a short variable declaration may redeclare
variables provided they were originally declared earlier in the same block (or
the parameter lists if the block is the function body) with the same type, and at
least one of the non-blank18 variables is new. As a consequence, redeclaration
can only appear in a multi-variable short declaration. Redeclaration does not
introduce a new variable; it just assigns a new value to the original[62].

field1, offset := nextField(str, 0)
field2, offset := nextField(str, offset) // redeclares offset

This should not be allowed, as the programmer can introduce mutation by redeclaring
already existing variables in a short variable declaration.

For Loops

Although the aforementioned rules cover almost every case of reassignment, they miss
one of the most important parts: For loops.

In Go, there is only one looping construct, the for loop. However, it can be used in
roughly four different ways:

The infinite loop:

for {
// ...

}

The while loop:

17This also holds true for the var keyword
18The blank identifier (_) discards a value; x, _ := f()
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for x == true { // boolean expression
// ...

}

The regular C-style for loop:

for x := 0; x < 10; x++ {
// ...

}

And the range loop, which allows to range (iterate) over slices, maps and channels19:

for idx, elem := range []int{1,8,5,4} {
// ...

}

Range returns two values, both of which can be omitted20. When ranging over a slice,
the index and a copy of the element at that index is returned. For maps, the key and a
copy of the corresponding value is returned.

Except of the C-style for loop, the loops do not have a reassignment statement when
converted to the AST. For this reason, they would not be detected by the previously
defined rule and thus the programmer could use them. However, issues emerge when
having a closer look at the loop constructs.

The range loop needs to keep track of the element, and it does so (internally) by using a
pointer. This results in a (internal) reassignment.

The regular C-style for loop and the ‘while’ loop do not work at all without reassignments.
Although in the while-loop the reassignment happens at another place, most probably
within the loop, it is easier for the user if a report on the loop construct is generated
instead.

The infinite loop does not contain any reassignments and is thereby be legal by the
definition of the reassignment rule. Because of this, it should not be reported.

All other for-loops need to be reported as they contain internal reassignments.
19Channels have not been discussed in this thesis, but are an important building block in Go’s concurrency

features. They work similarly to Unix Pipes (‘|’), in that they allow to send data in and receive it on
the other ‘side’. A range receives as long as the channel is not closed.

20The values can be omitted by using the blank identifier ‘_’. Skipping the index is thus
_, elem := range s, while skipping the value with i, _ := range s which is equal to just
i := range s.

34



4 Implementation

4.1 Implementing the new built-in functions

4.1.1 Required Steps

Adding a built-in function to the Go language requires a few more steps than just adding
support within the compiler. While it would technically be enough to support the
translation between Go code and the compiled binary, there would be no visibility for a
developer that there is a function which could be used. For a complete implementation,
the following steps are necessary:

– Adding the Godoc[65] that describes the function and it’s usage

– Adding type-checking support in external packages for tools like Gopls1

– Adding the implementation within the internal2 package of the compiler

– Adding the AST node type

– Adding type-checking for that node type

– Adding the AST traversal (‘walk’) for that node type, translating it to AST
nodes that the compiler already knows and can translate to built-in runtime-
calls or SSA

The Go source code that is relevant for this thesis can be classified into three different
types. One is the Godoc — the documentation for the new built-in functions. The other
two are the ‘public’ and the ‘private’ implementation of these built-ins.

The ‘private’ implementation is located within the src/cmd/compile/internal package[67].
Because it is an internal package, it can only be used by the packages in src/cmd/compile,
which contain the implementation of the compiler itself.

When calling
1Gopls is Go’s official language server implementation[66].
2‘internal’ packages can only be imported by other packages that are rooted at the parent of the ‘internal’
directory. It is used to make specific packages not importable in order to decrease potential API
surface[67].
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$> go build .

the compiler is invoked indirectly through the main ‘go’ binary. To directly invoke the
compiler,

$> go tool compile

can be used.

Everything that is not in src/cmd/compile is referred to as the ‘public’ part of the
compiler in this thesis. The ‘public’ parts are used by external tools, for example Gopls,
for type-checking, source code validation and analysis.

4.1.2 Adding the Godoc

In Go, documentation is generated directly from comments within the source code [65].
This also applies to built-in functions in the compiler, which have a function stub to
document their behaviour[68], but no implementation, as that is done in the compiler[69].

The documentation for built-ins should be as short and precise as possible. The usage of
‘Type’ and ‘Type1’ has been decided based on other built-ins like ‘append’ and ’delete’.
The function headers are derived from their Haskell counterparts, adjusted to the Go
nomenclature.

135 // ...
// The prepend built-in function prepends an element to the start of
// the slice. This function always returns a copy of the underlying
// array, with the given element at the head of that array. It is
// therefore necessary to store the result of prepend, often in the

140 // variable holding the slice itself.
func prepend(elem Type, slice []Type) []Type

// The fmap built-in function maps a slice of elements from one type to
// a slice of elements of another type, using the given transformation

145 // function. The returned slice always has the same number of elements
// as the source slice.
func fmap(fn func(Type) Type1, slice []Type) []Type1

// The fold built-in functions fold over a slice of elements with the
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150 // given function. It takes init, the second argument, and the first /
// last item of the list and applies the function, then it takes the
// penultimate item from the end and the result, and so on.
// foldr and foldl differ in their evaluation order - foldr starts
// at the last, foldl at the first element of the slice.

155 func foldr(fn func(Type, Type1) Type1, acc Type1, slice []Type) Type1
func foldl(fn func(Type1, Type) Type1, acc Type1, slice []Type) Type1

// The filter built-in function filters a slice with the given
// function. If the function returns true on an element, the

160 // element will be added to the returned slice.
func filter(fn func(Type) bool, slice []Type) []Type

// ...

Source Code 4.1: Godoc for the new built-in functions[70]

4.1.3 Public packages

To enable tooling support for the new built-in functions, they have to be registered in the
‘go/*’ packages. The only package that is affected by new built-ins is ‘go/types’.

Note that the ‘go/*‘ family of packages, such as ‘go/parser‘ and ‘go/types‘,
have no relation to the compiler. Since the compiler was initially written in
C, the ‘go/*‘ packages were developed to enable writing tools working with Go
code, such as ‘gofmt‘ and ‘vet‘.[41]

In the ‘types’ package, the built-ins have to be registered as such and as ‘predeclared’
functions:

107 // ...
// A builtinId is the id of a builtin function.
type builtinId int

110

const (
// universe scope
_Append builtinId = iota
_Prepend

115 _Fmap
_Foldr
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_Foldl
_Filter
// ...

145 // ...
var predeclaredFuncs = [...]struct {

name string
nargs int
variadic bool

150 kind exprKind
}{

_Append: {"append", 1, true, expression},
_Prepend: {"prepend", 2, false, expression},
_Fmap: {"fmap", 2, false, expression},

155 _Foldr: {"foldr", 3, false, expression},
_Foldl: {"foldl", 3, false, expression},
_Filter: {"filter", 2, false, expression},
_Cap: {"cap", 1, false, expression},
// ...

Source Code 4.2: Registering new built-in functions[71]

This registration defines the type of the built-in — they are all expressions, as they return
a value — and the number of arguments. After that, the type-checking and its associated
tests have been implemented, but are not shown here. The implementation can be located
in the ‘src/go/types’ package in the files ‘builtins.go’, ‘builtins_test.go’ and ‘universe.go’
See the git diff[72] to view the changes that have been made.

This concludes the type-checking for external tools. ‘gopls’ can be compiled against these
changed public packages3 and will then return errors if the wrong types are used. For
example, when trying to prepend an integer to a string slice:

package main

import "fmt"

func main() {

3See Appendix 12 for instructions on how to build Gopls.
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fmt.Println(prepend(3, []string{"hello", "world"}))
}

Gopls will report a type-checking error:

$ gopls check main.go
/tmp/playground/main.go:6:22-23: cannot convert 3 (untyped int constant)

to string↪→

4.1.4 Private packages

In the private packages - the actual compiler - the expressions have to be type-checked,
ordered and transformed.

The type-checking process is similar to the one executed for external tools. Furthermore,
during the type-checking process, the built-in function’s return types are set and node
types may be converted, if possible and necessary. An operation may expect it’s arguments
to be in node.Left and node.Right, which means type-checking will also need to move the
argument nodes from their default location in node.List to node.Left and node.Right.

Ordering ensures the evaluation order and re-orders expressions. All of the new built-in
functions will be evaluated left-to-right and there are no special cases to handle.

Transforming means changing the AST nodes from the built-in operation to nodes that
the compiler knows how to translate to SSA. The actual algorithm that these functions
use cannot be implemented in normal Go code, they have to be translated directly to
AST nodes and statements.

There are more steps to compiling Go code, for example escape-checking, SSA conversion
and a lot of optimisations. These are not necessary to implement and do not have a direct
relation to the new built-ins.

The algorithms and part of the implementations for the built-in functions are covered in
the following chapters4.

4To see the full implementation, the git diff can be viewed[72].
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fmap

To make the implementation in the AST easier, the algorithm will first be developed in
Go, and then translated. Implementing fmap in Go is relatively simple:

func fmap(fn func(Type) Type1, src []Type) (dest []Type1) {
for _, elem := range src {

dest = append(dest, fn(elem))
}
return dest

}

Source Code 4.3: fmap implementation in Go

However, there is room for improvement within that function. Instead of calling append
at every iteration of the loop, the slice can be allocated with make at the beginning of the
function. Thus, calls to grow the slice at runtime can be saved.

func fmap(fn func(Type) Type1, src []Type) []Type1 {
dest := make([]Type1, len(src))
for i, elem := range src {

dest[i] = fn(elem)
}
return dest

}

Source Code 4.4: Improved implementation of fmap

This algorithm can be translated to the following AST node:

3043 // ...
// walkfmap rewrites the builtin fmap(f(in) out, []slice) to

3045 //
// init {
// dst = make([]out, len(slice))
// for i, e := range slice {
// dst[i] = f(e)

3050 // }
// }
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// dst
//
func walkfmap(n *Node, init *Nodes) *Node {

3055 // ...

Source Code 4.5: fmap AST translation[73]

The full AST code is not displayed here as, although the algorithm is simple, the AST
translation is not as concise and more than 10 times the size. A demonstration on how a
translation looks like will be introduced in Section 4.1.4. The full implementation of this
function is referenced in the code block’s caption.

prepend

The general algorithm for ‘prepend’ is:

func prepend(elem Type, slice []Type) []Type {
dest := make([]Type, 1, len(src)+1)
dest[0] = elem
return append(dest, slice...)

}

Source Code 4.6: prepend implementation in Go

The call to make(...) creates a slice with the length of 1 and the capacity to hold all
elements of the source slice, plus one. By allocating the slice with the full length, another
slice allocation within the call to append(...) is saved. The element to prepend is added
as the first element of the slice, and append will then copy the ‘src’ slice into ‘dest’.

The implementation within ‘walkprepend’ reflects these lines of Go code, but as AST
nodes:

3000 // ...
// walkprepend rewrites the builtin prepend(elem, slice) to
//
// init {
// dest := make([]<T>, 1, len(slice)+1)

3005 // dest[0] = elem
// append(dest, slice...)
// }
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// dest
//

3010 func walkprepend(n *Node, init *Nodes) *Node {
// ...

Source Code 4.7: prepend AST translation[74]

foldr and foldl

As outlined in Chapter 3.1.4, there will be two fold functions; foldr and foldl. foldr
behaves exactly like its Haskell counterpart, while foldl behaves like foldl’ in Haskell.

While the fold algorithms are most obvious when using recursion, due to performance
considerations, an imperative implementation has been chosen:

func foldr(fn func(Type, Type1) Type1, acc Type1, slice []Type) Type1 {
for i := len(s) - 1; i >= 0; i-- {

acc = fn(s[i], acc)
}
return acc

}

func foldl(fn func(Type1, Type) Type1, acc Type1, slice []Type) Type1 {
for i := 0; i < len(s); i++ {

acc = f(acc, s[i])
}
return acc

}

Source Code 4.8: fold implementation in Go

The code further clarifies the differences between the two different folds; the slice is
processed in reverse order for foldr (as it would be if this algorithm would have been
implemented with recursion), and the order of arguments to the fold function is switched.

The AST walk translates fold to:

3108 // ...
// walkfold rewrites the builtin fold function. For the right fold:

3110 // foldr(f(T1, T2) T2, a T2, s []T1) T2
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//
// init {
// acc = a
// for i := len(s) - 1; i >= 0; i-- {

3115 // acc = f(s[i], acc)
// }
// }
// acc
//

3120 // And the left fold:
// foldl(f(T2, T1) T2, a T2, s []T1) T2
//
// init {
// acc = a

3125 // for i := 0; i < len(s); i++ {
// acc = f(acc, s[i])
// }
// }
// acc

3130 func walkfold(n *Node, init *Nodes, isRight bool) *Node {
// ...

Source Code 4.9: fold AST translation[75]

filter

Being a slice-manipulating function, filter also needs to traverse the whole slice in a
for-loop. However, compared to the other newly built-in functions, the size for the target
slice is unknown until all items have been traversed, which is why filter does not allow for
the same optimisations as the other functions.

func filter(f func(Type) bool, s []Type) (dst []Type) {
for i := range s {

if f(s) {
dst = append(dst, s[i])

}
}

}

Source Code 4.10: filter implementation in Go
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And the same algorithm, but translated to AST statements:

3180 // ...
// walkfilter rewrites the builtin filter function.
// filter(f(T) bool, slice []T) []T
//
// init {

3185 // dst = make([]out, 0)
// for i, e := range slice {
// if f(slice[i]) {
// dst = append(dst, slice[i])
// }

3190 // }
// }
// dst
//
func walkfilter(n *Node, init *Nodes) *Node {

3195 // ...

Source Code 4.11: filter AST translation[76]

Writing the AST traversal

The previous chapters have all shown the function headers of the ‘walk’ functions that are
used to traverse and rewrite the new built-ins. To illustrate how the actual implementation
of such an algorithm looks like in these functions, we provide a small example here. The
full implementation of these algorithms can be viewed at the git diff[72].

This demonstration shows the translation of the statement

filtered := make([]T, 0)

into AST nodes, or rather the construction of these AST nodes. The type is simply a
placeholder, as the AST construction uses the source slice’s type. This source slice is
another AST node of which the type can be obtained from.

// create the AST node for the first argument that is
// being passed to `make', the type:
makeType := nod(OTYPE, nil, nil)
makeType.Type = source.Type // use the type of the slice
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// create the make(...) AST node
makeDest := nod(OMAKE, nil, nil)
// add the arguments (the type and an int constant 0
makeDest.List.Append(makeType, nodintconst(0)) // make([]<T>, 0))

// create the "variable" where the result of make will be stored
filtered := temp(source.Type)
// the final AST node that contains the statement
// filtered = make([]<T>, 0)
final := nod(OAS, filtered, makeDest))

Source Code 4.12: Illustrating the difference between Go code and it’s AST code
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4.2 Functional Check

As discussed in Chapter 3.2, to assist writing purely functional code, a linter needs to be
implemented that detects reassignments within a Go program.

To get a grasp on the issues this linter should report, the first step is to capture some
examples, cases that should be matched against.

4.2.1 Examples

The simplest cases are standalone reassignments and assignment operators:

x := 5
x = 6 // forbidden
// or
var y = 5
y = 6 // forbidden
y += 6 // forbidden
y <<= 2 // forbidden
y++ // forbidden

Where the statements with a // forbidden comment should be reported.

Adding block scoping to this, shadowing the old variable needs to be allowed:

x := 5
{

x = 6 // forbidden, changing the old value
x := 6 // allowed, as this shadows the old variable

}

What should be illegal is to declare the variable first and then assign a value to it:

var x int
x = 6 // forbidden

The exception here are functions, as they need to be declared first in order to recursively
call them:
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var f func()
f = func() {

f()
}

Furthermore, the linter also needs to be able to handle multiple variables at once:

var f func()
x, f, y := 1, func() { f() }, 2

Loops should be reported too, as they are using reassignments internally:

for i := 0; i < 5; i++ { // forbidden
for i != 3 { // forbidden

for { // allowed
// ...

}
}

}

All the aforementioned examples and more can be found in the test cases for funcheck[77].

4.2.2 Building a linter

The Go ecosystem already provides an official library for building code analysis tools, the
‘analysis’ package from the Go Tools repository[78]. With this package, implementing a
static code analyser is reduced to writing the actual AST node analysis.

To define an analysis, a variable of type *analysis.Analyzer has to be declared:

var Analyzer = &analysis.Analyzer{
Name: "assigncheck",
Doc: "reports reassignments",
Run: func(*analysis.Pass) (interface{}, error)

}
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The necessary steps are now adding the ‘Run’ function and registering the analyser in
the main() function.

The ‘Run’ function takes an *analysis.Pass type. The Pass provides information about
the package that is being analysed and some helper-functions to report diagnostics.

With ‘analysis.Pass.Files‘ and the help of the ‘go/ast‘ package, traversing the syntax tree
of every file in a package becomes extremely convenient:

for _, file := range pass.Files {
ast.Inspect(file, func(n ast.Node) bool {

// node analysis here
})

}

To implement funcheck as described, five different AST node types need to be taken care
of. The simpler ones are *ast.IncDecStmt, *ast.ForStmt and *ast.RangeStmt. An
‘IncDecStmt’ node is a x++ or x-- expression and should always be reported. ‘ForStmt’
and ‘RangeStmt’ are similar; a ‘RangeStmt’ is a ‘for’ loop with the range keyword instead
of an init-, condition- and post-statement.

Both of these loop-types need to be reported explicitly as they do not show up as
reassignments in the AST. Thus, the basic building block for the AST traversal is the
following switch statement:

31 // ...
switch as := n.(type) {
case *ast.ForStmt:

// exception for `for { ... }`,
35 if as.Cond != nil || as.Init != nil || as.Post != nil {

pass.Reportf(as.Pos(), "internal reassignment (for loop) in
%q", renderFor(pass.Fset, as))↪→

}
return true

case *ast.RangeStmt:
40 pass.Reportf(as.Pos(), "internal reassignment (for loop) in

%q", renderRange(pass.Fset, as))↪→

return true

case *ast.IncDecStmt:
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pass.Reportf(as.Pos(), "inline reassignment of %s",
render(pass.Fset, as.X))↪→

45 // ...

Source Code 4.13: Handling the basic AST types in funcheck[79]

The remaining two node types are *ast.DeclStmt and *ast.AssignStmt. They are not
as simple to handle, which is why they are covered in their own chapters.

4.2.3 Detecting reassignments

To recapitulate, the goal of this step is to detect all assignments except blank identifiers
(discarded values cannot be mutated) and function literals, if the function is declared in
the last statement5.

To detect such reassignments, funcheck iterates over all identifiers on the left-hand side of
an assignment statement.

On the left-hand side of an assignment is a list of expressions. These expressions can
be identifiers, index expressions (*ast.IndexExpr, for map and slice access), a ‘star
expression’ (*ast.StarExpr6) or others.

If the expression is not an identifier, the assignment must be a reassignment, as all
non-identifier expressions contain an already declared identifier. For example, the slice
index expression s[5] is of type *ast.IndexExpr:

// An IndexExpr node represents an expression followed by an index.
IndexExpr struct {

X Expr // expression
Lbrack token.Pos // position of "["
Index Expr // index expression
Rbrack token.Pos // position of "]"

}

Where IndexExpr.X is our identifier ‘s’ (of type *ast.Ident) and a IndexExpr.Index is
5 (of type *ast.BasicLit).

5This rule is to simplify the logic of the checker and make it easier for developers to read the code. It
means that no code may be between var f func and f = func() { ... }.

6star expressions are expressions that are prefixed by an asterisk, dereferencing a pointer. For example
*x = 5, if x is of type *int.
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As these nested identifiers already need to be declared beforehand (else they could not be
used in the expression), all expressions on the left-hand side of an assignment that are
not identifiers are reassignments.

Identifiers are the only expressions that can occur in declarations and reassignments.
A naive approach would be to check for the colon in a short variable declaration (:=).
However, as touched upon in Chapter 3.2.5, even short variable declarations may contain
redeclarations, if at least one variable is new.

Thus, another approach is needed.

Every identifier (an AST node with type *ast.Ident) contains an object7 that links to
the declaration.

This declaration, of whatever type it may be, always has a position (and a corresponding
function to retrieve that position) in the source file.

A reassignment is detected if an identifier’s declaration position does not match the
assignment’s position (indicating that the variable is being assigned at a different place
to where it is declared).

This is illustrated in the code block 4.14. What can be clearly seen is that in the assignment
y = 3, y’s declaration refers to the position of the first assignment x, y := 1, 2, the
position where y has been declared.

Assignment "x, y := 1, 2": 2958101
Ident "x": 2958101

Decl "x, y := 1, 2": 2958101
Ident "y": 2958104

Decl "x, y := 1, 2": 2958101
Assignment "y = 3": 2958115

Ident "y": 2958115
Decl "x, y := 1, 2": 2958101

Source Code 4.14: Illustration of an assignment node and corresponding positions[81]

As this technique works on an identifier level, multi-variable declarations or assignments
can be verified without any additional effort.

7‘An object describes a named language entity such as a package, constant, type, variable, function
(incl. methods), or a label’[80].
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If a variable in a short variable declaration is being reassigned, the variable’s ‘Declaration’
field will point to the original position of its declaration, which can be easily detected (as
shown in code block 4.14).

4.2.4 Handling function declarations

In contrast to all other variable types, function variables may be ‘reassigned’ once. As
discussed in Chapter 3.2.5, this is to allow recursive function literals. Detecting and not
reporting these assignments is a two-step process, as two consecutive AST nodes need to
be inspected.

The first step is to detect function declarations; statements of the form var f func().
Should such a statement be encountered, its position is saved for the following AST
node.

In the consecutive AST node it is ensured that, if the node is an assignment and the
assignee identifier is of type function literal, the position matches the previously saved
one.

The position of the declaration and AST node structure can be seen in 4.15

Declaration "var f func() int": 2958142
Ident "f func() int": 2958146

Assignment "f = func() int { return y }": 2958160
Ident "f": 2958160

Decl "f func() int": 2958146

Source Code 4.15: Illustration of a function literal assignment[81]

With this technique it is possible to exempt functions from the reassignment rule.

4.2.5 Testing Funcheck

The analysis-package is distributed with a sub-package ‘analysistest’. This package makes
it extremely simple to test a code analysis tool.

By providing test data and the expected messages from funcheck in a structured way, all
that is needed to test funcheck is:
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package assigncheck

import (
"testing"

"golang.org/x/tools/go/analysis/analysistest"
)

func TestRun(t *testing.T) {
analysistest.Run(t, analysistest.TestData(), Analyzer)

}

Source Code 4.16: Testing a code analyser with the ‘analysistest’ package

The library expects the test data in the current directory in a folder named ‘testdata’
and then spawns and executes the analyser on the files in that folder. Comments in those
files are used to describe the expected message:

x := 5
fmt.Println(x)
x = 6 // want `^reassignment of x$`
fmt.Println(x)

This will ensure that on the line x = 6 an error message is reported that says ‘reassignment
of x’.
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5 Application

5.1 Demonstration of the new built-in functions

The new built-in functions can be used in the same manner as the existing built-ins like
append. This example serves as a demonstration by modifying a slice of integers, although
they can be used to modify a slice of any type.

package main

import (
"fmt"
"strconv"

)

// Counterpart to Haskell's `derive Show` through code generation
//go:generate stringer -type parity

type parity int

const even parity = 0
const odd parity = 1

// shouldBe returns a function that returns true if an int is of the
// given parity
func shouldBe(p parity) func(i int) bool {

return func(i int) bool {
return i%2 == int(p)

}
}

func main() {
lst := []int{1, 2, 3, 4, 5}
lstMult := fmap(func(i int) int { return i * 5 }, prepend(0, lst))
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addToString := func(s string, i int) string {
return s + strconv.Itoa(i) + " "

}
// fold over even / odd numbers and add them to a string
evens := foldl(addToString, even.String()+": ",

filter(shouldBe(even), lstMult))
odds := foldl(addToString, odd.String()+": ",

filter(shouldBe(odd), lstMult))

fmt.Println(evens, odds) // even: 0 10 20 odd: 5 15 25
}

Source Code 5.1: Demonstration of the new built-in functions

5.2 Refactoring the Prettyprint Package

The code blocks 4.14 and 4.15 have been generated by a small package ‘prettyprint’
contained in the funcheck repository.

To see how the newly built-in functions and funcheck can be used, this ‘prettyprint’
package can be refactored to a purely functional implementation. The current version of
the package is written in what could be considered idiomatic Go1.

The prettyprinter is based on the same framework as assigncheck2, but instead of reporting
anything, it prints AST information to stdout.

Similarly to assigncheck, the main logic of the package is within a function literal that is
being passed to the ast.Inspect function.

Prettyprint only checks two AST node types, *ast.DeclStmt and *ast.AssignStmt
(declarations and assignments).

For example, for the program

package main

import "fmt"

1There is no exact definition of what idiomatic Go is, so this interpretation could be challenged. It is
idiomatic Go code to the author.

2Assigncheck is the main package for funcheck and checks the reassignments
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func main() {
x, y := 1, 2
y = 3
fmt.Println(x, y)

}

the following AST information is printed:

Assignment "x, y := 1, 2": 2958101
Ident "x": 2958101

Decl "x, y := 1, 2": 2958101
Ident "y": 2958104

Decl "x, y := 1, 2": 2958101
Assignment "y = 3": 2958115

Ident "y": 2958115
Decl "x, y := 1, 2": 2958101

To refactor it to a purely functional version, funcheck can be used to list reassignments:

$> funcheck .
prettyprint.go:20:2: internal reassignment (for loop) in

"for _, file := range pass.Files { ... }"↪→

prettyprint.go:42:2: internal reassignment (for loop) in
"for i := range decl.Specs { ... }"↪→

prettyprint.go:67:2: internal reassignment (for loop) in
"for _, expr := range as.Lhs { ... }"↪→

As can be seen in the output, the package uses 3 for loops to range over slices. However,
there are no other reassignments of variables in the code.

The code to print declarations, which causes the second lint message, is as shown in code
block 5.2.

func checkDecl(as *ast.DeclStmt, fset *token.FileSet) {
fmt.Printf("Declaration %q: %v\n", render(fset, as), as.Pos())
decl, ok := as.Decl.(*ast.GenDecl)
if !ok {

return
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}

for i := range decl.Specs {
val, ok := decl.Specs[i].(*ast.ValueSpec)
if !ok {

continue
}

if val.Values != nil {
continue

}

if _, ok := val.Type.(*ast.FuncType); !ok {
continue

}

fmt.Printf("\tIdent %q: %v\n", render(fset, val),
val.Names[0].Pos())↪→

}
}

Source Code 5.2: Pretty-printing declarations in idiomatic Go

To convert this for-loop appropriately, the new built-in ‘foldl’ can be used. To recapitulate,
the ‘foldl’ function is being defined as:

func foldl(fn func(Type1, Type) Type1, acc Type1, slice []Type) Type1

As ‘foldl’ requires a return type, a dummy type ‘null" can be introduced, which is just an
empty struct:

type null struct{}

Now the code within the for loop can be used to create a function literal:

check := func(_ null, spec ast.Spec) (n null) {
// implementation

}
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There are two subtleties in regards to the introduced null type: First, the null value
that is being passed as an argument is being discarded by the use of an empty identifier.
Secondly, the return value is ‘named’, which means the variable ‘n’ is already declared in
the function block. Because of this, ‘naked returns’ can be used, so there is no need to
specify which variable is being returned.

The code snippet 5.2 can be translated to:

func checkDecl(as *ast.DeclStmt, fset *token.FileSet) {
fmt.Printf("Declaration %q: %v\n", render(fset, as), as.Pos())

check := func(_ null, spec ast.Spec) (n null) {
val, ok := spec.(*ast.ValueSpec)
if !ok {

return
}

if val.Values != nil {
return

}

if _, ok := val.Type.(*ast.FuncType); !ok {
return

}

fmt.Printf("\tIdent %q: %v\n", render(fset, val),
val.Names[0].Pos())↪→

return
}

if decl, ok := as.Decl.(*ast.GenDecl); ok {
_ = foldl(check, null{}, decl.Specs)

}
}

Source Code 5.3: Pretty-printing declarations in functional Go

The for-loop has been replaced by a ‘foldl’, where a function closure that contains the
actual processing is passed.

While this still looks similar to the original example, this is mostly due to the ‘if’
statements. In Haskell, pattern matching would be used and nil checks could be omitted
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entirely. Also, as Haskell’s type system is more advanced, the handling of those types
would be different too.

However, the goal of this thesis is to make functional code look more familiar to pro-
grammers that are used to imperative code. And while it may not look like it, the code
does not use any mutation of variables3, for loops or global state. Therefore, it can be
concluded that this snippet is purely functional as per the definition from Chapter 3.2.1.

5.3 Quicksort

In Chapter 1.1, a naive implementation of the Quicksort sorting algorithm has been
introduced. Implementing this algorithm in Go is now straightforward and the similarities
between the Haskell implementation and the functional Go implementation are striking:

func quicksort(p []int) []int {
if len(p) == 0 {

return []int{}
}

lesser := filter(func(x int) bool { return p[0] > x }, p[1:])
greater := filter(func(x int) bool { return p[0] <= x }, p[1:])

return append(quicksort(lesser), prepend(p[0], quicksort(greater))...)
}

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)

where
lesser = filter (< p) xs
greater = filter (>= p) xs

Source Code 5.4: Quicksort implementations compared

Again, the Go implementation bridges the gap between being imperative and functional,
while still being obvious about the algorithm. Furthermore, as expected, when inspecting

3Libraries may do, but the scope is not to rewrite any existing libraries.
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the code with funcheck, no non-functional constructs are reported.

5.4 Comparison to Java Streams

In Java 8, concepts from functional programming have been introduced to the language.
The major new feature was Lambda Expressions — anonymous function literals — and
streams. Streams are an abstract layer to process data in a functional way, with ‘map’,
‘filter’, ‘reduce’ and more.

Java Streams are similar to the new built-in functions in this thesis:

List<Integer> even = list.stream()
.filter(x -> x % 2 == 0)
.collect(Collectors.toList());

even := filter(
func(x int) bool { return x%2 == 0 },
list)

Source Code 5.5: Comparison Java Streams and functional Go

The lambda-syntax in Java is more concise than Go’s function literals, where the complete
function header has to be provided4.

However, the conversion to a stream and back to a list (with list.stream() and
.collect(Collectors.toList())) is not required in Go, reducing the mental overhead
for the programmer.

Apart from syntactical differences, Java Streams contain all the functions that have been
added as built-ins to Go, and a lot more.

On the other hand, Java’s Syntax is arguably more complex than Go. An indicator for
this might be the language specification; Go’s Language Specification is roughly 110 pages,
while Java’s specification spans more than 700 pages5, more than 6 times the size.

4There is an open proposal to add a lightweight anonymous function syntax to Go 2, which, if
implemented, would resolve this verbosity[82]

5The Java 8 Specification is 724[83], the Java 14 Specification 774[84] pages.
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The consideration of which language to choose comes down to the experience with either
language. An experienced Java programmer will find it easier to start with Java’s toolset,
while programmers coming from a C background may choose Go.
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6 Results

To learn functional programming without being introduced to a new syntax at the same
time ensures that programmers can fully concentrate on functional concepts. Although Go
already supported a functional programming style, the programmer may not have known
if the code was purely functional or if there still were imperative constructs embedded.

In the last chapters, functional purity has been defined as a law based on one simple rule:
immutability. Immutability dictates that once assigned, a variable’s value never changes.
This in turn leads to function purity, which means that functions do not have side effects
and their return value is solely influenced by the function’s parameters.

It has been shown that although purely functional languages like Haskell aim to be
completely pure, this objective is difficult to accomplish. The reason for this are Input /
Output actions; user input, network connections, randomness and time are all impure.
Haskell wraps these impure functions in the IO monad, which is a way to work around
the compiler’s optimisations based on functional purity. In addition, although the IO
monad does not make impure functions pure, it does serve as documentation to its users
(‘if the function has IO, it is impure’) and guarantees a certain execution order.

Go on the other hand does not have this issue, as the Go compiler does not optimise
execution based on purity guarantees. Having a similar construct to the IO monad in
Go would, as such, only serve documentation purposes. Because of this, the decision has
been taken to ignore the impurity that is implied with IO actions.

Apart from IO, to achieve functional purity, the global state of a program should not
influence the return values of specific function. This ties into immutablitiy; if global state
can not be mutated, it can also not influence or change the result value of a function.

Based on these observations, a static code analysis tool has been developed that reports all
reassignments of variables. In other words, it forbids the usage of the regular assignment
operator (=), only allowing the short variable declarations (:=). However, the experienced
Go developer may know that the := operator can also reassign previously declared
variables, implying that the solution to the problem is not as simple as forbidding the
assignment operator. Further, there are many more edge cases that have been detected
with careful testing: To recursively call function literals, they must be declared beforehand
(before assigning the actual function to it) because of Go’s scoping rules. Additionally,
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exceptions had to be made for the blank identifier (_) and variables that are declared
outside of the current file.

With all of this in place, an algorithm has been chosen that is based on the identifier’s
declaration position. In the AST that is being checked, every identifier node has a
field which contains the position of it’s declaration. If this does not match the current
identifier’s position, the operation must be a reassignment. The resulting binary, called
‘funcheck’, successfully reports such reassignments:

s := "hello world"
fmt.Println(s)
s = "and goodbye"
fmt.Println(s)

$> funcheck .
file.go:3:2: reassignment of s

This linter can be used and executed against any Go package. To eliminate the reported
errors, code has to be rewritten in a purely functional manner.

However, functional code often relies heavily on lists and list-processing functions. Al-
though Go does not have a built-in list datatype, Go’s slices, an abstraction built on top
of arrays, mitigate a lot of downsides when comparing regular arrays to lists1.

What Go’s slices lack on the other hand are the typical higher-order functions like
‘map’, ‘filter’ or ‘reduce’. These are commonly used in functional programming and most
languages contain implementations of these functions already — Go does not.

Due to the lack of polymorphism, writing implementations for these functions would result
in a lot of duplicated code. To mitigate this issue, the most common higher-order functions
have been added to the list of Go’s built-in functions, which are registered, type-checked
and implemented within the Go compiler. As these are handled directly at compile time,
built-in functions may be polymorphic, for example allowing the programmer to use the
same ‘filter’ function for all list-types.

To determine which higher-order functions are most commonly used, the most popular
open-source Haskell projects (pandoc, shellcheck and purescript, to name a few) have
been analysed. As a result, ‘fmap’, ‘fold’, ‘filter’ and ‘prepend’ (‘cons’) have been added
as built-ins into the compiler. These functions make it easier to write purely functional

1Arrays / Slices and Lists have a different runtime behaviour (indexing, adding or removing elements).
However, the performance of the code was not considered to be in scope for this thesis.

62



Ramon Rüttimann

code in Go, in turn helping the programmer to learn functional programming with a
familiar language and syntax.

While implementing these functions in a regular Go program would be a matter of
minutes, adding them to the Go compiler is not as simple. To illustrate, the functions
have been written out in regular Go in the chapters 4.1.4 to 4.1.4 and are 33 lines of
code, all functions combined. In the Go compiler, it is necessary to register the functions,
type-check the calls and manipulate the AST instead of writing the algorithm in Go code
directly. This took more than 800 lines of code to do so.

As a result, using these functions is equal to using any other built-in function: there
is documentation in Godoc, type-checking support in the language server2 and in the
compilation phase, as well as a polymorphic function header, allowing the programmer to
call the function with any allowed type.

Demonstrations of these functions and how functional Go code looks like can be seen in
Chapter 5.

With these additions to Go and its ecosystem, aspiring functional programmers can fully
concentrate of the concepts of functional programming while keeping a familiar syntax
at hand. However, it should not be considered a fully featured functional programming
language. Rather, it should serve as a starting point and make the transition to a language
like Haskell easier.

Differences in the syntax between Haskell and Go exemplify why purely functional
programming languages have a distinct syntax compared to imperative or object-oriented
languages. Many constructs can be expressed more concisely in Haskell, without the
additional overhead that many programming languages, including Go, introduce.

Using ‘the right tool for the job’ is important, and this paper shows that imperative
or object-oriented programming languages are not the right tool for production-grade
functional programming. However, they can serve as a good starting point and help
transitioning to a pure functional programming language.

2If the language server (gopls) is compiled against the modified version of Go, as described in Appendix 12
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7 Discussion

The aforementioned extensions to the Go language and its tooling should be a help to
learn functional programming. I believe that through these extensions it is easier to
write purely functional code in Go, enabling a developer to learn functional programming
with a familiar syntax in an obvious way. Here, Go’s simplicity and verbosity are a
key differentiator to other languages. Instead of having as many features as possible to
support every usecase, Go has been designed with simplicity in mind1.

In many cases, this leads to more ‘verbose’ code — more lines of code compared to a
similar implementation in other languages. However, I argue that, especially for the first
steps in functional programming,

Clear is better than clever[85]

Staying in touch with this core Go principle, this results in functional code that may be
verbose, but easy to read and understand.

It should be clear that the result is not a ‘production-ready’ functional programming
language. It is a language to help getting started with functional programming; either by
re-implemeting pieces of code that have not been clear in how they work, or by taking an
imperative block of code and refactoring it to make it purely functional.

In many cases, the resulting code will still look familiar to the imperative counterpart,
even if ‘funcheck’ assures that it is purely functional. This, I believe, bridges the gap that
developers usually have to overcome by themselves.

To be a purely functional programming language, Go is missing too many features that
would be required to write concise functional code. The very basic type system2, no
advanced pattern matching and only explicit currying are all examples why Go is not
useful in day-to-day functional programming.

At the same time, the obvious nature of Go is exactly because it is missing all of these
features. The Go team explicitly tries not to include too many features within the
language in order to keep the complexity of code to a minimum[86]. The simplicity of the

1For example, Go only has 25 keywords, compared to 37 in C99 and 84 in C++11
2Not only does Go not have polymorphism (yet), Go’s type system is simple by design: there are no
implicit type conversions, no sum types (tagged unions, variant) and almost no type inference.
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language is a key feature of Go and an important reason why it was chosen to implement
the ideas in the first place. Especially for learning new concepts, hiding implementations
and ideas behind features may not be what is desired and helpful.

On another note, what has not been an aspect in this thesis is performance. Go by itself
is relatively performant, however functional constructs, for example recursive function
calls, come with a performance cost. While in purely functional languages this can be
optimised, Go cannot or does not want to do these optimisations3.

While the newly built-in functions do not have any low-hanging fruits in regards to optimi-
sation, they would benefit from more aggressive inlining[88], for example. Benchmarking
and optimising these functions was out of scope for this thesis, but may be tackled in the
future.

The number one issue that still exists is the simple type system. Not only the lack of
polymorphism, which has been mitigated slightly by providing the most used higher-order
functions as built-ins, but also the lack of algebraic data types, especially sum types.

Algebraic data types can be split up into two groups, product types and sum types. Most
product types can be built with Go too; records are basically equal to structs, and tuples
are not needed too often, as functions can just return multiple values. Sum types however
are not available in Go at all. It is possible to imitate sum types in Go with interfaces (see
the example code in Appendix 9), and ensure an exhaustive match by a linter. This linter
should have been implemented as part of this thesis. However, after careful consideration,
it has been decided that this will not be done due to the simple reason that such a linter
already exists[89]. That linter could be merged with ‘funcheck’, which is left as an exercise
to the reader.

Further, a linter does not eliminate the fact that sum types are not properly integrated into
the language. This may be an interesting area for further research and implementation
possibilities4.

3For example, with tail call optimisation, the Go team explicitly decided not to do it because the stack
trace would be lost[87]

4There is a mention about sum types in the current Go Generics Proposal[90], but the initial implemen-
tation of generics will most likely not contain sum types
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AST Abstract Syntax Tree, an abstract representation of source code as a tree. 16, 35,
62, 63

copy by value Copy by value refers to the argument-passing style where the supplied
arguments are copied. To pass references in Go, the developer needs to use pointers
instead. 27

DAG Directed Acyclic Graph. 16

EBNF Extended Backus-Naur Form, an extended version of the ‘Backus-Naur Form, a
notation technique to describe programming language syntax. 32
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compiled binary that simplifies and improves compiler optimisations. 16, 35

stdout Standard Output, the default output stream for programs. 54

sum types Sum types, often also called aggregated types, variant or tagged union is a
data structure that can hold one of several, predefined data types. For example,
Haskell’s Either holds either a value of type A or type B. Similar to that, Maybe
can hold either a concrete value, or ‘Nothing’. 65

78



Appendices

79



Functional Go

1 Information about this thesis

This thesis, including this document, is contained in a single git repository that can be
found at GitHub[93].

All the work that has been done is open sourced under the Apache License 2.0, except
the Go source code, which has its own license.

To view the code, build or reproduce results, this git repository can be cloned and its
submodules checked out. The version that has been submitted can be checked out through
the tag ‘v1.0.0’:

$> git clone https://github.com/tommyknows/bachelor-thesis.git
$> cd bachelor-thesis
$> git checkout v1.0.0
$> git submodule init
$> git submodule update

The directory ‘thesis’ contains the LATEX code for this paper. There is a helper required
for displaying code in the thesis which is located in ‘thesis/utils’ and needs to be built
with ‘go build .’. However, a PDF which should be on the same state as the source is
provided in the repository too (‘thesis/thesis.pdf’).

The ‘work’ directory contains code that has been developed in this thesis. In this
directory, the Go and funcheck source code can be found (see Appendix 10 and 11).
Further, some examples of functional Go have been developed in the ‘example’ directory.
The ‘common-list-functions’ folder contains the script as mentioned in Appendix 3.

2 Example for Functional Options

This source code example demonstrates ‘functional options’ as introduced in this paper.
Functional options are usually passed to a constructor to configure the new instance, in
this case a web server. The advantages of functional options are that the API ends up to
be cleaner and more easily extensible and allows the default use-case to be as simple as
possible.

1 package webserver

type Server struct {
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Timeout time.Duration
5 Port int

ListenAddress string
}
type Option func(*Server)

10 func Timeout(d time.Duration) Option {
return func(s *Server) { s.Timeout = d }

}
func Port(p int) Option {

return func(s *Server) { s.Port = p }
15 }

func New(opts ...Option) *Server {
s := &Server{ // initialise with default values

Timeout: 500*time.Millisecond,
20 Port: 0, // uses a random port on the host

ListenAddress: "http://localhost",
}
// apply all options
for _, opt := range opts {

25 opt(s)
}
return s

}

30 // usage examples from outside the package:
s := webserver.New() // uses all the default options
s := webserver.New(webserver.Timeout(time.Second), webserver.Port(8080))

Source Code 1: Functional Options for a simple web server

3 Analysis of function occurrences in Haskell code

The results of the analysis have been acquired by running the ‘count-function’ script that
is located in ‘work/common-list-functions’ in the git repository[93].

The script utilises ripgrep to count the number of occurrences, so this must be installed
in order to run this script.
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./count-function.sh ":" "((map)|(fmap))" "((foldr)|(foldl'?))" "filter"
"reverse" "take" "drop" "sum" "zip" "product" "maximum" "min↪→

imum"
Searching for occurrences in subdirectories of ./common-list-functions
Found 2912 occurrences of ":"
Found 1873 occurrences of "((map)|(fmap))"
Found 303 occurrences of "((foldr)|(foldl'?))"
Found 262 occurrences of "filter"
Found 154 occurrences of "reverse"
Found 108 occurrences of "take"
Found 81 occurrences of "drop"
Found 44 occurrences of "sum"
Found 38 occurrences of "zip"
Found 15 occurrences of "product"
Found 45 occurrences of "maximum"
Found 10 occurrences of "minimum"

The terms are searched with a leading and trailing space to get exact matches. Further,
as can be seen in the call to the script, the search combines the results of map together
with fmap, and foldr with foldl and foldl’.

4 Mutating variables in Go

Source Code 2 shows how pointers are used to mutate data in Go. This does not necessarily
need to be a ‘struct’ type, pointers can be used of any type. Pointers have to be used to
modify values because Go is a copy-by-value language and thus copies the parameters
that are passed to a function.

1 package main

import "fmt"

5 func main() {
m := MyStruct{

x: "struct",
y: 42,

}
10
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fmt.Println(m) // {struct 42}
mutateNoPointer(m)
fmt.Println(m) // {struct 42}
mutatePointer(&m)

15 fmt.Println(m) // {changed 0}
}

type MyStruct struct {
x string

20 y int
}

func mutateNoPointer(m MyStruct) {
m.x = "changed"

25 m.y = 0
}
func mutatePointer(m *MyStruct) {

m.x = "changed"
m.y = 0

30 }

Source Code 2: Example on how to mutate data in Go

5 Shadowing variables in Go

Source Code 3 demonstrates the block scoping and shadowing rules in Go.

1 package main

import "fmt"

5 func main() {
x := 5
fmt.Println(x) // 5
// introducing a new scope
{

10 // this assignment would be forbidden, as it
// overwrites the parent block's value value.
x = 3
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fmt.Println(x) // 3
}

15 fmt.Println(x) // 3
// introducing a new scope
{

// this redeclares the variable x, effectively
// shadowing it. This will not change the parent

20 // block's variable.
x := 4
fmt.Println(x) // 4

}
fmt.Println(x) // 3

25 }

Source Code 3: Example on how shadowing works on block scopes

6 Foldl and Foldl’ difference

This code example shows the difference between foldl and foldl’ in their execution. What
can be seen is that foldl builds up a call stack, while foldl’ executes the calls during the
traversal.

> (?) :: Int -> Int -> Int
> _ ? 0 = 0
> x ? y = x*y
>
> list :: [Int]
> list = [2,3,undefined,5,0]
>
> foldl (?) 1 list
foldl (?) 1 [2,3,undefined,5,0] -->
foldl (?) (1 ? 2) [3,undefined,5,0] -->
foldl (?) ((1 ? 2) ? 3) [undefined,5,0] -->
foldl (?) (((1 ? 2) ? 3) ? undefined) [5,0] -->
foldl (?) ((((1 ? 2) ? 3) ? undefined) ? 5) [0] -->
foldl (?) (((((1 ? 2) ? 3) ? undefined) ? 5) ? 0) [] -->
((((1 ? 2) ? 3) ? undefined) ? 5) ? 0 -->
0
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> foldl' (?) 1 list
foldl' (?) 1 [2,3,undefined,5,0] -->

1 ? 2 --> 2
foldl' (?) 2 [3,undefined,5,0] -->

2 ? 3 --> 6
foldl' (?) 6 [undefined,5,0] -->

6 ? undefined -->
*** Exception: Prelude.undefined

Source Code 4: foldl and foldl’ strictness[56]

7 Workaround for the missing foldl implementation in Go

This code block exemplifies how foldl could be implemented in Go code. It is based on the
example from Appendix 6, rewritten in Go. While Go does not know about the concept
of laziness, the programmer may implement the laziness himself by working with function
closures.

In this example, *int is used instead of int to simulate Haskell’s undefined with a
nil-pointer. If a nil-pointer is dereferenced, the program will panic.

In the lazy version of this code (utilising ‘myFold’ and ‘mulLazy’), the panic does not occur
because the nil-pointer is never dereferenced as the function closure is never executed.
This is equal to the ‘foldl’ demonstration in Appendix 6.

The non-lazy version (‘foldl’ and ‘mul’) executes the function while traversing the slice
and thus panics.

1 package main

import "fmt"

5 func main() {
zero, one, two, three := 0, 1, 2, 3
list := []*int{&one, &two, nil, &three, &zero}

// this will work, as the values will be evaluated
10 // "lazily" - the nested functions will never

// be executed, thus it will never panic.
fmt.Printf("%v\n", myFold(mulLazy, 1, list))
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// This will panic.
fmt.Printf("%v\n", foldl(mul, 1, list))

15 }

func mul(x int, y *int) int {
if *y == 0 {

return 0
20 }

return x * *y
}

func mulLazy(x func() int, y *int) func() int {
25 return func() int {

if *y == 0 {
return 0

}
return x() * *y

30 }
}

func myFold(f func(func() int, *int) func() int, acc int, list []*int)
int {↪→

a := func() int { return acc }
35 a = foldl(f, a, list)

return a()
}

$> fgo run .
0
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x109e945]

goroutine 1 [running]:
...

Source Code 5: Working around the missing foldl implementation in Go
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8 Prettyprint implementation

These code blocks show the same package ‘prettyprint’, once in idiomatic Go and once in
functional Go. What can be seen is that the for loops have been replaced by the usage
of ‘foldl’ and anonymous functions.

1 /*
The prettyprint package visualises a Go AST, but only assignment
nodes. In these nodes, it prints their position, the identifier
and the identifier's declaration plus position.

5

It is used to visualise how assigncheck is checking for re-assignments.

To see it for yourself, run `go test -v .` in this directory.

10 $> go test -v .
=== RUN TestRun
Assignment "x, y := 1, 2": 2958101

Ident "x": 2958101
Decl "x, y := 1, 2": 2958101

15 Ident "y": 2958104
Decl "x, y := 1, 2": 2958101

Assignment "y = 3": 2958115
Ident "y": 2958115

Decl "x, y := 1, 2": 2958101
20 --- PASS: TestRun (0.93s)

PASS
ok github.com/tommyknows/funcheck/prettyprint 1.088s

*/
package prettyprint

25

import (
"bytes"
"fmt"
"go/ast"

30 "go/printer"
"go/token"

"golang.org/x/tools/go/analysis"
)
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35

var Analyzer = &analysis.Analyzer{
Name: "prettyprint",
Doc: "prints positions",
Run: run,

40 }

func run(pass *analysis.Pass) (interface{}, error) {
for _, file := range pass.Files {

ast.Inspect(file, func(n ast.Node) bool {
45 switch as := n.(type) {

case *ast.DeclStmt:
checkDecl(as, pass.Fset)

case *ast.AssignStmt:
checkAssign(as, pass.Fset)

50 }
return true

})
}

55 return nil, nil
}

func checkDecl(as *ast.DeclStmt, fset *token.FileSet) {
fmt.Printf("Declaration %q: %v\n", render(fset, as), as.Pos())

60 decl, ok := as.Decl.(*ast.GenDecl)
if !ok {

return
}

65 for i := range decl.Specs {
val, ok := decl.Specs[i].(*ast.ValueSpec)
if !ok {

continue
}

70

if val.Values != nil {
continue

}
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75 if _, ok := val.Type.(*ast.FuncType); !ok {
continue

}

fmt.Printf("\tIdent %q: %v\n", render(fset, val),
val.Names[0].Pos())↪→

80 }
}

func checkAssign(as *ast.AssignStmt, fset *token.FileSet) {
type pos interface {

85 Pos() token.Pos
}

fmt.Printf("Assignment %q: %v\n", render(fset, as), as.Pos())

90 for _, expr := range as.Lhs {
ident := expr.(*ast.Ident) // Lhs always is an "IdentifierList"

fmt.Printf("\tIdent %q: %v\n", ident.String(), ident.Pos())

95 // skip blank identifiers
if ident.Name == "_" {

fmt.Printf("\t\tBlank Identifier!\n")
continue

}
100

if ident.Obj == nil {
fmt.Printf("\t\tDecl is not in the same file!\n")
continue

}
105

// make sure the declaration has a Pos func and get it
declPos := ident.Obj.Decl.(pos).Pos()
fmt.Printf("\t\tDecl %q: %v\n", render(fset, ident.Obj.Decl),

declPos)↪→

}
110 }

// render returns the pretty-print of the given node
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func render(fset *token.FileSet, x interface{}) string {
var buf bytes.Buffer

115 if err := printer.Fprint(&buf, fset, x); err != nil {
panic(err)

}
return buf.String()

}

Source Code 6: The original prettyprint implementation[91]

package prettyprint

import (
"bytes"
"fmt"
"go/ast"
"go/printer"
"go/token"

"golang.org/x/tools/go/analysis"
)

var Analyzer = &analysis.Analyzer{
Name: "prettyprint",
Doc: "prints positions",
Run: run,

}

type null struct{}

func checkDecl(as *ast.DeclStmt, fset *token.FileSet) {
fmt.Printf("Declaration %q: %v\n", render(fset, as), as.Pos())

check := func(_ null, spec ast.Spec) (n null) {
val, ok := spec.(*ast.ValueSpec)
if !ok {

return
}
if val.Values != nil {

return

90



Ramon Rüttimann

}
if _, ok := val.Type.(*ast.FuncType); !ok {

return
}
fmt.Printf("\tIdent %q: %v\n", render(fset, val),

val.Names[0].Pos())↪→

return
}

if decl, ok := as.Decl.(*ast.GenDecl); ok {
_ = foldl(check, null{}, decl.Specs)

}
}

func checkAssign(as *ast.AssignStmt, fset *token.FileSet) {
fmt.Printf("Assignment %q: %v\n", render(fset, as), as.Pos())

check := func(_ null, expr ast.Expr) (n null) {
ident, ok := expr.(*ast.Ident) // Lhs always is an "IdentifierList"
if !ok {

return
}

fmt.Printf("\tIdent %q: %v\n", ident.String(), ident.Pos())

switch {
case ident.Name == "_":

fmt.Printf("\t\tBlank Identifier!\n")
case ident.Obj == nil:

fmt.Printf("\t\tDecl is not in the same file!\n")
default:

// make sure the declaration has a Pos func and get it
declPos := ident.Obj.Decl.(ast.Node).Pos()
fmt.Printf("\t\tDecl %q: %v\n", render(fset, ident.Obj.Decl),

declPos)↪→

}

return
}
_ = foldl(check, null{}, as.Lhs)
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}

func run(pass *analysis.Pass) (interface{}, error) {
inspect := func(_ null, file *ast.File) (n null) {

ast.Inspect(file, func(n ast.Node) bool {
switch as := n.(type) {
case *ast.DeclStmt:

checkDecl(as, pass.Fset)
case *ast.AssignStmt:

checkAssign(as, pass.Fset)
}
return true

})
return

}
_ = foldl(inspect, null{}, pass.Files)

return nil, nil
}

// render returns the pretty-print of the given node
func render(fset *token.FileSet, x interface{}) string {

var buf bytes.Buffer
if err := printer.Fprint(&buf, fset, x); err != nil {

panic(err)
}
return buf.String()

}

Source Code 7: The refactored, functional prettyprint implementation[92]

9 Imitating Sum types in Go

1 package main

import "fmt"

5 func main() {
x := get(false)
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switch m := x.(type) {
case myInt:

10 fmt.Printf("Is integer: %v\n", m)
case myString:

fmt.Printf("Is string: %s\n", m)
}

}
15

func get(b bool) MySumType {
if b {

return myInt(0)
}

20 return myString("zero")
}

type MySumType interface {
mysumtype()

25 }

type myInt int

func (m myInt) mysumtype() {}
30

type myString string

func (m myString) mysumtype() {}

Source Code 8: Demonstration of how sum types can be imitated with interfaces

10 Compiling and using functional Go

To compile and use the changes to the Go compiler that have been implemented in this
thesis, these instructions should be followed.

First, check out the Go source code:

$> git clone https://github.com/tommyknows/go.git && cd go
$> git checkout bachelor-thesis
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10.1 With Docker

If Docker is installed on your system, you can follow these steps from within the checked out
‘go’ git repository on the branch ‘bachelor-thesis’. The downside of this approach is that
it complicates building and sharing binaries. To compile your own project, the directory
has to be mounted into the container. If your Guest OS is not Linux, cross-compilation is
required so that the executable can be ran on the host.

These steps have been wrapped inside a script that prints out the necessary commands
to configure your environment.

$> eval "$(./setup-docker.sh)"

The commands within the shell script will build Go in the container and print commands
to configure the environment. The ‘eval’ command then executes these printed commands.
Executing this command may take a while, as the Go compiler is compiled within this
process.

To build projects with the functional Go installation, simply use ‘fgo’ on the command
line. An alias has been created that mounts the current directory and executes the ‘fgo’
command within the container.

Note that if this only configures the ‘fgo’ command in the current shell session. To persist
it across shell-sessions, execute the script without eval:

$> ./setup-docker.sh

And add the printed commands to your ‘.bashrc’ (or equivalent). Further, you may also
need to change the binary path from ‘/tmp/fgo/bin’ to a path which is not cleaned up
regularly.

10.2 With a working Go installation

If you already have a working Go installation on your system, the following steps provide
a way to get functional Go up and running in the same way a normal go installation
does.

These steps need to be executed from within the checked out ‘go’ git repository on the
branch ‘bachelor-thesis’.

Build the functional Go binary and configure the environment:
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$> cd ./src
$> ./make.bash
$> ln -s $(realpath $(pwd)/../bin/go) /usr/local/bin/fgo
$> go env -w GOROOT=$(realpath $(pwd)/..)

The ‘go env’ command sets the GOROOT to point to the newly compiled tools and source
code and is valid for the current shell session only.

10.3 Using the installation

After these steps, the binary (or alias) ‘fgo’ can be used to test and build functional Go
code. ‘fgo’ is not different to the normal ‘go’ command, so all commands that work with
the normal ‘go’ command also work with the ‘fgo’ command.

$> cd <code directory>
$> fgo test ./...
$> fgo build ./...

11 Building Funcheck

Funcheck needs to be built against functional Go to properly detect the builtin functions.
If you have not done so already, install ‘fgo’ as shown in Appendix 10.

Then, funcheck can be installed directly with ‘go get’ (or rather, ‘fgo get’). ‘go get’
downloads the source code to the Go modules directory (usually in $GOPATH/pkg/mod),
compiles the specified package and moves the binary to $GOPATH/bin.

$> # go get should not be called from within a go module
$> cd /tmp
$> fgo get github.com/tommyknows/funcheck
$> funcheck -h

This installs ‘funcheck’ into $GOBIN or, if $GOBIN is not set, into $GOPATH/bin.

You can also clone the git repository and use ‘fgo build’ to build ‘funcheck’:
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$> git clone https://github.com/tommyknows/funcheck.git
$> cd funcheck
$> fgo build .
$> mv ./funcheck /usr/local/bin/funcheck
$> funcheck -h

To run funcheck against the current directory / package, simply run

$> funcheck .

12 Building Gopls

Gopls is the official language server for Go. Similar to funcheck, there are two options to
install it on your local machine.

Installing with ‘go get’:

$> # go get should not be called from within a go module
$> cd /tmp
$> fgo get golang.org/x/tools/gopls
$> gopls -h

Or by downloading the source manually:

$> git clone https://github.com/golang/tools.git
$> cd ./tools/gopls
$> fgo build .
$> mv ./gopls /usr/local/bin/gopls
$> gopls -h
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With the rise of Javascript, Rust, and Go, the functional programming paradigm has gained popularity 
too. Though none of these programming languages are purely functional, they all share the common 
feature of having the possibility to use functional concepts. 
However, a lot of programmers struggle initially with the concept of functional programming. 
Learning a purely functional programming language is extremely useful to gain familiarity with these 
concepts. Purely functional programming languages like Haskell though are not known for their 
beginner-friendliness. What makes learning a functional language difficult is that not only does the 
programmer have to learn an entirely different paradigm, but also a syntax that is uncommon for 
people coming from imperative or object-oriented languages. 

Objective 

The objective is to ease the entry into functional programming. This should be achieved by providing 
the common functional toolset and an analysis tool for functional code in Go. 

The common functional toolset, for example lists and operations on them, are found in pretty much 
every purely functional programming language. However, they are completely absent in Go. The 
difficulty here is that Go does not support polymorphism (as of Go 1), which means that most of 
these tools would have to be built into the compiler.  

Go being a multi-paradigm language, it also does not enforce any specific programming style. Though 
this is preferred at normal usage of Go, it makes it hard for an unexperienced programmer to tell 
apart which concepts are purely functional and which are not. 

To mitigate these points, the following work should be done: 

- Implement a List-Type in Go’s Compiler (similar to existing implementations of Slices and Maps) 

- Implement commonly used functions that work upon lists, like `map`, `reduce`, etc. 

- Write a code analysis tool that checks code and points out parts and constructs that are not 
purely functional 
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- Provide further linting for Sum Types1 within that linter 

If time allows it, further research with functional programming in Go could be conducted to find 
other issues that make it difficult to program in a purely functional style. These difficulties should 
then be made easier by either the code analysis tool or support within the compiler. 

In the end, functional Go should still be syntactically familiar to people that have worked with Go (or 
C in that regard). With that, one can learn the concepts related to functional programming, without 
also needing to learn a new language and syntax. 

Submission Date 

Friday, June 5th, 2020 

 

Winterthur, February 10th, 2020 

Gerrit Burkert, Karl Rege 
  

 

Update April 4th, 2020 

New submission date is:  
June 19th, 2020 

 
1 Sum types (sometimes also called a “tagged union” or variant”) are types that could take on one of several 
subtypes. They do not exist in Go (discussion on this can be found here: github.com/golang/go/issues/19412), 
though they are closely related to, and can be “implemented” with interfaces. However, on type switches, 
there is no possibility to do exhaustiveness checks, as the compiler does not know about sum types. 
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