// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/compile/internal/types" "cmd/internal/objabi" "cmd/internal/sys" "encoding/binary" "fmt" "strings" ) // The constant is known to runtime. const tmpstringbufsize = 32 const zeroValSize = 1024 // must match value of runtime/map.go:maxZero func walk(fn *Node) { Curfn = fn if Debug['W'] != 0 { s := fmt.Sprintf("\nbefore walk %v", Curfn.Func.Nname.Sym) dumplist(s, Curfn.Nbody) } lno := lineno // Final typecheck for any unused variables. for i, ln := range fn.Func.Dcl { if ln.Op == ONAME && (ln.Class() == PAUTO || ln.Class() == PAUTOHEAP) { ln = typecheck(ln, ctxExpr|ctxAssign) fn.Func.Dcl[i] = ln } } // Propagate the used flag for typeswitch variables up to the NONAME in its definition. for _, ln := range fn.Func.Dcl { if ln.Op == ONAME && (ln.Class() == PAUTO || ln.Class() == PAUTOHEAP) && ln.Name.Defn != nil && ln.Name.Defn.Op == OTYPESW && ln.Name.Used() { ln.Name.Defn.Left.Name.SetUsed(true) } } for _, ln := range fn.Func.Dcl { if ln.Op != ONAME || (ln.Class() != PAUTO && ln.Class() != PAUTOHEAP) || ln.Sym.Name[0] == '&' || ln.Name.Used() { continue } if defn := ln.Name.Defn; defn != nil && defn.Op == OTYPESW { if defn.Left.Name.Used() { continue } yyerrorl(defn.Left.Pos, "%v declared but not used", ln.Sym) defn.Left.Name.SetUsed(true) // suppress repeats } else { yyerrorl(ln.Pos, "%v declared but not used", ln.Sym) } } lineno = lno if nerrors != 0 { return } walkstmtlist(Curfn.Nbody.Slice()) if Debug['W'] != 0 { s := fmt.Sprintf("after walk %v", Curfn.Func.Nname.Sym) dumplist(s, Curfn.Nbody) } zeroResults() heapmoves() if Debug['W'] != 0 && Curfn.Func.Enter.Len() > 0 { s := fmt.Sprintf("enter %v", Curfn.Func.Nname.Sym) dumplist(s, Curfn.Func.Enter) } } func walkstmtlist(s []*Node) { for i := range s { s[i] = walkstmt(s[i]) } } func samelist(a, b []*Node) bool { if len(a) != len(b) { return false } for i, n := range a { if n != b[i] { return false } } return true } func paramoutheap(fn *Node) bool { for _, ln := range fn.Func.Dcl { switch ln.Class() { case PPARAMOUT: if ln.isParamStackCopy() || ln.Name.Addrtaken() { return true } case PAUTO: // stop early - parameters are over return false } } return false } // The result of walkstmt MUST be assigned back to n, e.g. // n.Left = walkstmt(n.Left) func walkstmt(n *Node) *Node { if n == nil { return n } setlineno(n) walkstmtlist(n.Ninit.Slice()) switch n.Op { default: if n.Op == ONAME { yyerror("%v is not a top level statement", n.Sym) } else { yyerror("%v is not a top level statement", n.Op) } Dump("nottop", n) case OAS, OASOP, OAS2, OAS2DOTTYPE, OAS2RECV, OAS2FUNC, OAS2MAPR, OCLOSE, OCOPY, OCALLMETH, OCALLINTER, OCALL, OCALLFUNC, ODELETE, OSEND, OPRINT, OPRINTN, OPANIC, OEMPTY, ORECOVER, OGETG: if n.Typecheck() == 0 { Fatalf("missing typecheck: %+v", n) } wascopy := n.Op == OCOPY init := n.Ninit n.Ninit.Set(nil) n = walkexpr(n, &init) n = addinit(n, init.Slice()) if wascopy && n.Op == OCONVNOP { n.Op = OEMPTY // don't leave plain values as statements. } // special case for a receive where we throw away // the value received. case ORECV: if n.Typecheck() == 0 { Fatalf("missing typecheck: %+v", n) } init := n.Ninit n.Ninit.Set(nil) n.Left = walkexpr(n.Left, &init) n = mkcall1(chanfn("chanrecv1", 2, n.Left.Type), nil, &init, n.Left, nodnil()) n = walkexpr(n, &init) n = addinit(n, init.Slice()) case OBREAK, OCONTINUE, OFALL, OGOTO, OLABEL, ODCLCONST, ODCLTYPE, OCHECKNIL, OVARDEF, OVARKILL, OVARLIVE: break case ODCL: v := n.Left if v.Class() == PAUTOHEAP { if compiling_runtime { yyerror("%v escapes to heap, not allowed in runtime", v) } if prealloc[v] == nil { prealloc[v] = callnew(v.Type) } nn := nod(OAS, v.Name.Param.Heapaddr, prealloc[v]) nn.SetColas(true) nn = typecheck(nn, ctxStmt) return walkstmt(nn) } case OBLOCK: walkstmtlist(n.List.Slice()) case OCASE: yyerror("case statement out of place") case ODEFER: Curfn.Func.SetHasDefer(true) Curfn.Func.numDefers++ if Curfn.Func.numDefers > maxOpenDefers { // Don't allow open-coded defers if there are more than // 8 defers in the function, since we use a single // byte to record active defers. Curfn.Func.SetOpenCodedDeferDisallowed(true) } if n.Esc != EscNever { // If n.Esc is not EscNever, then this defer occurs in a loop, // so open-coded defers cannot be used in this function. Curfn.Func.SetOpenCodedDeferDisallowed(true) } fallthrough case OGO: switch n.Left.Op { case OPRINT, OPRINTN: n.Left = wrapCall(n.Left, &n.Ninit) case ODELETE: if mapfast(n.Left.List.First().Type) == mapslow { n.Left = wrapCall(n.Left, &n.Ninit) } else { n.Left = walkexpr(n.Left, &n.Ninit) } case OCOPY: n.Left = copyany(n.Left, &n.Ninit, true) default: n.Left = walkexpr(n.Left, &n.Ninit) } case OFOR, OFORUNTIL: if n.Left != nil { walkstmtlist(n.Left.Ninit.Slice()) init := n.Left.Ninit n.Left.Ninit.Set(nil) n.Left = walkexpr(n.Left, &init) n.Left = addinit(n.Left, init.Slice()) } n.Right = walkstmt(n.Right) if n.Op == OFORUNTIL { walkstmtlist(n.List.Slice()) } walkstmtlist(n.Nbody.Slice()) case OIF: n.Left = walkexpr(n.Left, &n.Ninit) walkstmtlist(n.Nbody.Slice()) walkstmtlist(n.Rlist.Slice()) case ORETURN: Curfn.Func.numReturns++ if n.List.Len() == 0 { break } if (Curfn.Type.FuncType().Outnamed && n.List.Len() > 1) || paramoutheap(Curfn) { // assign to the function out parameters, // so that reorder3 can fix up conflicts var rl []*Node for _, ln := range Curfn.Func.Dcl { cl := ln.Class() if cl == PAUTO || cl == PAUTOHEAP { break } if cl == PPARAMOUT { if ln.isParamStackCopy() { ln = walkexpr(typecheck(nod(ODEREF, ln.Name.Param.Heapaddr, nil), ctxExpr), nil) } rl = append(rl, ln) } } if got, want := n.List.Len(), len(rl); got != want { // order should have rewritten multi-value function calls // with explicit OAS2FUNC nodes. Fatalf("expected %v return arguments, have %v", want, got) } if samelist(rl, n.List.Slice()) { // special return in disguise // TODO(josharian, 1.12): is "special return" still relevant? // Tests still pass w/o this. See comments on https://go-review.googlesource.com/c/go/+/118318 walkexprlist(n.List.Slice(), &n.Ninit) n.List.Set(nil) break } // move function calls out, to make reorder3's job easier. walkexprlistsafe(n.List.Slice(), &n.Ninit) ll := ascompatee(n.Op, rl, n.List.Slice(), &n.Ninit) n.List.Set(reorder3(ll)) break } walkexprlist(n.List.Slice(), &n.Ninit) // For each return parameter (lhs), assign the corresponding result (rhs). lhs := Curfn.Type.Results() rhs := n.List.Slice() res := make([]*Node, lhs.NumFields()) for i, nl := range lhs.FieldSlice() { nname := asNode(nl.Nname) if nname.isParamHeapCopy() { nname = nname.Name.Param.Stackcopy } a := nod(OAS, nname, rhs[i]) res[i] = convas(a, &n.Ninit) } n.List.Set(res) case ORETJMP: break case OINLMARK: break case OSELECT: walkselect(n) case OSWITCH: walkswitch(n) case ORANGE: n = walkrange(n) } if n.Op == ONAME { Fatalf("walkstmt ended up with name: %+v", n) } return n } func isSmallMakeSlice(n *Node) bool { if n.Op != OMAKESLICE { return false } l := n.Left r := n.Right if r == nil { r = l } t := n.Type return smallintconst(l) && smallintconst(r) && (t.Elem().Width == 0 || r.Int64() < maxImplicitStackVarSize/t.Elem().Width) } // walk the whole tree of the body of an // expression or simple statement. // the types expressions are calculated. // compile-time constants are evaluated. // complex side effects like statements are appended to init func walkexprlist(s []*Node, init *Nodes) { for i := range s { s[i] = walkexpr(s[i], init) } } func walkexprlistsafe(s []*Node, init *Nodes) { for i, n := range s { s[i] = safeexpr(n, init) s[i] = walkexpr(s[i], init) } } func walkexprlistcheap(s []*Node, init *Nodes) { for i, n := range s { s[i] = cheapexpr(n, init) s[i] = walkexpr(s[i], init) } } // convFuncName builds the runtime function name for interface conversion. // It also reports whether the function expects the data by address. // Not all names are possible. For example, we never generate convE2E or convE2I. func convFuncName(from, to *types.Type) (fnname string, needsaddr bool) { tkind := to.Tie() switch from.Tie() { case 'I': if tkind == 'I' { return "convI2I", false } case 'T': switch { case from.Size() == 2 && from.Align == 2: return "convT16", false case from.Size() == 4 && from.Align == 4 && !types.Haspointers(from): return "convT32", false case from.Size() == 8 && from.Align == types.Types[TUINT64].Align && !types.Haspointers(from): return "convT64", false } if sc := from.SoleComponent(); sc != nil { switch { case sc.IsString(): return "convTstring", false case sc.IsSlice(): return "convTslice", false } } switch tkind { case 'E': if !types.Haspointers(from) { return "convT2Enoptr", true } return "convT2E", true case 'I': if !types.Haspointers(from) { return "convT2Inoptr", true } return "convT2I", true } } Fatalf("unknown conv func %c2%c", from.Tie(), to.Tie()) panic("unreachable") } // The result of walkexpr MUST be assigned back to n, e.g. // n.Left = walkexpr(n.Left, init) func walkexpr(n *Node, init *Nodes) *Node { if n == nil { return n } // Eagerly checkwidth all expressions for the back end. if n.Type != nil && !n.Type.WidthCalculated() { switch n.Type.Etype { case TBLANK, TNIL, TIDEAL: default: checkwidth(n.Type) } } if init == &n.Ninit { // not okay to use n->ninit when walking n, // because we might replace n with some other node // and would lose the init list. Fatalf("walkexpr init == &n->ninit") } if n.Ninit.Len() != 0 { walkstmtlist(n.Ninit.Slice()) init.AppendNodes(&n.Ninit) } lno := setlineno(n) if Debug['w'] > 1 { Dump("before walk expr", n) } if n.Typecheck() != 1 { Fatalf("missed typecheck: %+v", n) } if n.Type.IsUntyped() { Fatalf("expression has untyped type: %+v", n) } if n.Op == ONAME && n.Class() == PAUTOHEAP { nn := nod(ODEREF, n.Name.Param.Heapaddr, nil) nn = typecheck(nn, ctxExpr) nn = walkexpr(nn, init) nn.Left.SetNonNil(true) return nn } opswitch: switch n.Op { default: Dump("walk", n) Fatalf("walkexpr: switch 1 unknown op %+S", n) case ONONAME, OEMPTY, OGETG, ONEWOBJ: case OTYPE, ONAME, OLITERAL: // TODO(mdempsky): Just return n; see discussion on CL 38655. // Perhaps refactor to use Node.mayBeShared for these instead. // If these return early, make sure to still call // stringsym for constant strings. case ONOT, ONEG, OPLUS, OBITNOT, OREAL, OIMAG, ODOTMETH, ODOTINTER, ODEREF, OSPTR, OITAB, OIDATA, OADDR: n.Left = walkexpr(n.Left, init) case OEFACE, OAND, OSUB, OMUL, OADD, OOR, OXOR, OLSH, ORSH: n.Left = walkexpr(n.Left, init) n.Right = walkexpr(n.Right, init) case ODOT, ODOTPTR: usefield(n) n.Left = walkexpr(n.Left, init) case ODOTTYPE, ODOTTYPE2: n.Left = walkexpr(n.Left, init) // Set up interface type addresses for back end. n.Right = typename(n.Type) if n.Op == ODOTTYPE { n.Right.Right = typename(n.Left.Type) } if !n.Type.IsInterface() && !n.Left.Type.IsEmptyInterface() { n.List.Set1(itabname(n.Type, n.Left.Type)) } case OLEN, OCAP: if isRuneCount(n) { // Replace len([]rune(string)) with runtime.countrunes(string). n = mkcall("countrunes", n.Type, init, conv(n.Left.Left, types.Types[TSTRING])) break } n.Left = walkexpr(n.Left, init) // replace len(*[10]int) with 10. // delayed until now to preserve side effects. t := n.Left.Type if t.IsPtr() { t = t.Elem() } if t.IsArray() { safeexpr(n.Left, init) setintconst(n, t.NumElem()) n.SetTypecheck(1) } case OCOMPLEX: // Use results from call expression as arguments for complex. if n.Left == nil && n.Right == nil { n.Left = n.List.First() n.Right = n.List.Second() } n.Left = walkexpr(n.Left, init) n.Right = walkexpr(n.Right, init) case OEQ, ONE, OLT, OLE, OGT, OGE: n = walkcompare(n, init) case OANDAND, OOROR: n.Left = walkexpr(n.Left, init) // cannot put side effects from n.Right on init, // because they cannot run before n.Left is checked. // save elsewhere and store on the eventual n.Right. var ll Nodes n.Right = walkexpr(n.Right, &ll) n.Right = addinit(n.Right, ll.Slice()) n = walkinrange(n, init) case OPRINT, OPRINTN: n = walkprint(n, init) case OPANIC: n = mkcall("gopanic", nil, init, n.Left) case ORECOVER: n = mkcall("gorecover", n.Type, init, nod(OADDR, nodfp, nil)) case OCLOSUREVAR, OCFUNC: case OCALLINTER, OCALLFUNC, OCALLMETH: if n.Op == OCALLINTER { usemethod(n) } if n.Op == OCALLFUNC && n.Left.Op == OCLOSURE { // Transform direct call of a closure to call of a normal function. // transformclosure already did all preparation work. // Prepend captured variables to argument list. n.List.Prepend(n.Left.Func.Enter.Slice()...) n.Left.Func.Enter.Set(nil) // Replace OCLOSURE with ONAME/PFUNC. n.Left = n.Left.Func.Closure.Func.Nname // Update type of OCALLFUNC node. // Output arguments had not changed, but their offsets could. if n.Left.Type.NumResults() == 1 { n.Type = n.Left.Type.Results().Field(0).Type } else { n.Type = n.Left.Type.Results() } } walkCall(n, init) case OAS, OASOP: init.AppendNodes(&n.Ninit) // Recognize m[k] = append(m[k], ...) so we can reuse // the mapassign call. mapAppend := n.Left.Op == OINDEXMAP && n.Right.Op == OAPPEND if mapAppend && !samesafeexpr(n.Left, n.Right.List.First()) { Fatalf("not same expressions: %v != %v", n.Left, n.Right.List.First()) } n.Left = walkexpr(n.Left, init) n.Left = safeexpr(n.Left, init) if mapAppend { n.Right.List.SetFirst(n.Left) } if n.Op == OASOP { // Rewrite x op= y into x = x op y. n.Right = nod(n.SubOp(), n.Left, n.Right) n.Right = typecheck(n.Right, ctxExpr) n.Op = OAS n.ResetAux() } if oaslit(n, init) { break } if n.Right == nil { // TODO(austin): Check all "implicit zeroing" break } if !instrumenting && isZero(n.Right) { break } switch n.Right.Op { default: n.Right = walkexpr(n.Right, init) case ORECV: // x = <-c; n.Left is x, n.Right.Left is c. // order.stmt made sure x is addressable. n.Right.Left = walkexpr(n.Right.Left, init) n1 := nod(OADDR, n.Left, nil) r := n.Right.Left // the channel n = mkcall1(chanfn("chanrecv1", 2, r.Type), nil, init, r, n1) n = walkexpr(n, init) break opswitch case OAPPEND: // x = append(...) r := n.Right if r.Type.Elem().NotInHeap() { yyerror("%v is go:notinheap; heap allocation disallowed", r.Type.Elem()) } switch { case isAppendOfMake(r): // x = append(y, make([]T, y)...) r = extendslice(r, init) case r.IsDDD(): r = appendslice(r, init) // also works for append(slice, string). default: r = walkappend(r, init, n) } n.Right = r if r.Op == OAPPEND { // Left in place for back end. // Do not add a new write barrier. // Set up address of type for back end. r.Left = typename(r.Type.Elem()) break opswitch } // Otherwise, lowered for race detector. // Treat as ordinary assignment. case OPREPEND: // x = prepend(...) r := n.Right if r.Type.Elem().NotInHeap() { yyerror("%v is go:notinheap; heap allocation disallowed", r.Type.Elem()) } n.Right = walkprepend(r, init) case OFMAP: // x = map(...) r := n.Right if r.Type.Elem().NotInHeap() { yyerror("%v is go:notinheap; heap allocation disallowed", r.Type.Elem()) } n.Right = walkfmap(r, init) case OFOLDR: // x = fold(...) n.Right = walkfold(n.Right, init, true) case OFOLDL: n.Right = walkfold(n.Right, init, false) case OFILTER: n.Right = walkfilter(n.Right, init) } if n.Left != nil && n.Right != nil { n = convas(n, init) } case OAS2: init.AppendNodes(&n.Ninit) walkexprlistsafe(n.List.Slice(), init) walkexprlistsafe(n.Rlist.Slice(), init) ll := ascompatee(OAS, n.List.Slice(), n.Rlist.Slice(), init) ll = reorder3(ll) n = liststmt(ll) // a,b,... = fn() case OAS2FUNC: init.AppendNodes(&n.Ninit) r := n.Right walkexprlistsafe(n.List.Slice(), init) r = walkexpr(r, init) if isIntrinsicCall(r) { n.Right = r break } init.Append(r) ll := ascompatet(n.List, r.Type) n = liststmt(ll) // x, y = <-c // order.stmt made sure x is addressable or blank. case OAS2RECV: init.AppendNodes(&n.Ninit) r := n.Right walkexprlistsafe(n.List.Slice(), init) r.Left = walkexpr(r.Left, init) var n1 *Node if n.List.First().isBlank() { n1 = nodnil() } else { n1 = nod(OADDR, n.List.First(), nil) } fn := chanfn("chanrecv2", 2, r.Left.Type) ok := n.List.Second() call := mkcall1(fn, types.Types[TBOOL], init, r.Left, n1) n = nod(OAS, ok, call) n = typecheck(n, ctxStmt) // a,b = m[i] case OAS2MAPR: init.AppendNodes(&n.Ninit) r := n.Right walkexprlistsafe(n.List.Slice(), init) r.Left = walkexpr(r.Left, init) r.Right = walkexpr(r.Right, init) t := r.Left.Type fast := mapfast(t) var key *Node if fast != mapslow { // fast versions take key by value key = r.Right } else { // standard version takes key by reference // order.expr made sure key is addressable. key = nod(OADDR, r.Right, nil) } // from: // a,b = m[i] // to: // var,b = mapaccess2*(t, m, i) // a = *var a := n.List.First() if w := t.Elem().Width; w <= zeroValSize { fn := mapfn(mapaccess2[fast], t) r = mkcall1(fn, fn.Type.Results(), init, typename(t), r.Left, key) } else { fn := mapfn("mapaccess2_fat", t) z := zeroaddr(w) r = mkcall1(fn, fn.Type.Results(), init, typename(t), r.Left, key, z) } // mapaccess2* returns a typed bool, but due to spec changes, // the boolean result of i.(T) is now untyped so we make it the // same type as the variable on the lhs. if ok := n.List.Second(); !ok.isBlank() && ok.Type.IsBoolean() { r.Type.Field(1).Type = ok.Type } n.Right = r n.Op = OAS2FUNC // don't generate a = *var if a is _ if !a.isBlank() { var_ := temp(types.NewPtr(t.Elem())) var_.SetTypecheck(1) var_.SetNonNil(true) // mapaccess always returns a non-nil pointer n.List.SetFirst(var_) n = walkexpr(n, init) init.Append(n) n = nod(OAS, a, nod(ODEREF, var_, nil)) } n = typecheck(n, ctxStmt) n = walkexpr(n, init) case ODELETE: init.AppendNodes(&n.Ninit) map_ := n.List.First() key := n.List.Second() map_ = walkexpr(map_, init) key = walkexpr(key, init) t := map_.Type fast := mapfast(t) if fast == mapslow { // order.stmt made sure key is addressable. key = nod(OADDR, key, nil) } n = mkcall1(mapfndel(mapdelete[fast], t), nil, init, typename(t), map_, key) case OAS2DOTTYPE: walkexprlistsafe(n.List.Slice(), init) n.Right = walkexpr(n.Right, init) case OCONVIFACE: n.Left = walkexpr(n.Left, init) fromType := n.Left.Type toType := n.Type // typeword generates the type word of the interface value. typeword := func() *Node { if toType.IsEmptyInterface() { return typename(fromType) } return itabname(fromType, toType) } // Optimize convT2E or convT2I as a two-word copy when T is pointer-shaped. if isdirectiface(fromType) { l := nod(OEFACE, typeword(), n.Left) l.Type = toType l.SetTypecheck(n.Typecheck()) n = l break } if staticbytes == nil { staticbytes = newname(Runtimepkg.Lookup("staticbytes")) staticbytes.SetClass(PEXTERN) staticbytes.Type = types.NewArray(types.Types[TUINT8], 256) zerobase = newname(Runtimepkg.Lookup("zerobase")) zerobase.SetClass(PEXTERN) zerobase.Type = types.Types[TUINTPTR] } // Optimize convT2{E,I} for many cases in which T is not pointer-shaped, // by using an existing addressable value identical to n.Left // or creating one on the stack. var value *Node switch { case fromType.Size() == 0: // n.Left is zero-sized. Use zerobase. cheapexpr(n.Left, init) // Evaluate n.Left for side-effects. See issue 19246. value = zerobase case fromType.IsBoolean() || (fromType.Size() == 1 && fromType.IsInteger()): // n.Left is a bool/byte. Use staticbytes[n.Left]. n.Left = cheapexpr(n.Left, init) value = nod(OINDEX, staticbytes, byteindex(n.Left)) value.SetBounded(true) case n.Left.Class() == PEXTERN && n.Left.Name != nil && n.Left.Name.Readonly(): // n.Left is a readonly global; use it directly. value = n.Left case !fromType.IsInterface() && n.Esc == EscNone && fromType.Width <= 1024: // n.Left does not escape. Use a stack temporary initialized to n.Left. value = temp(fromType) init.Append(typecheck(nod(OAS, value, n.Left), ctxStmt)) } if value != nil { // Value is identical to n.Left. // Construct the interface directly: {type/itab, &value}. l := nod(OEFACE, typeword(), typecheck(nod(OADDR, value, nil), ctxExpr)) l.Type = toType l.SetTypecheck(n.Typecheck()) n = l break } // Implement interface to empty interface conversion. // tmp = i.itab // if tmp != nil { // tmp = tmp.type // } // e = iface{tmp, i.data} if toType.IsEmptyInterface() && fromType.IsInterface() && !fromType.IsEmptyInterface() { // Evaluate the input interface. c := temp(fromType) init.Append(nod(OAS, c, n.Left)) // Get the itab out of the interface. tmp := temp(types.NewPtr(types.Types[TUINT8])) init.Append(nod(OAS, tmp, typecheck(nod(OITAB, c, nil), ctxExpr))) // Get the type out of the itab. nif := nod(OIF, typecheck(nod(ONE, tmp, nodnil()), ctxExpr), nil) nif.Nbody.Set1(nod(OAS, tmp, itabType(tmp))) init.Append(nif) // Build the result. e := nod(OEFACE, tmp, ifaceData(c, types.NewPtr(types.Types[TUINT8]))) e.Type = toType // assign type manually, typecheck doesn't understand OEFACE. e.SetTypecheck(1) n = e break } fnname, needsaddr := convFuncName(fromType, toType) if !needsaddr && !fromType.IsInterface() { // Use a specialized conversion routine that only returns a data pointer. // ptr = convT2X(val) // e = iface{typ/tab, ptr} fn := syslook(fnname) dowidth(fromType) fn = substArgTypes(fn, fromType) dowidth(fn.Type) call := nod(OCALL, fn, nil) call.List.Set1(n.Left) call = typecheck(call, ctxExpr) call = walkexpr(call, init) call = safeexpr(call, init) e := nod(OEFACE, typeword(), call) e.Type = toType e.SetTypecheck(1) n = e break } var tab *Node if fromType.IsInterface() { // convI2I tab = typename(toType) } else { // convT2x tab = typeword() } v := n.Left if needsaddr { // Types of large or unknown size are passed by reference. // Orderexpr arranged for n.Left to be a temporary for all // the conversions it could see. Comparison of an interface // with a non-interface, especially in a switch on interface value // with non-interface cases, is not visible to order.stmt, so we // have to fall back on allocating a temp here. if !islvalue(v) { v = copyexpr(v, v.Type, init) } v = nod(OADDR, v, nil) } dowidth(fromType) fn := syslook(fnname) fn = substArgTypes(fn, fromType, toType) dowidth(fn.Type) n = nod(OCALL, fn, nil) n.List.Set2(tab, v) n = typecheck(n, ctxExpr) n = walkexpr(n, init) case OCONV, OCONVNOP: n.Left = walkexpr(n.Left, init) if n.Op == OCONVNOP && checkPtr(Curfn, 1) { if n.Type.IsPtr() && n.Left.Type.Etype == TUNSAFEPTR { // unsafe.Pointer to *T n = walkCheckPtrAlignment(n, init, nil) break } if n.Type.Etype == TUNSAFEPTR && n.Left.Type.Etype == TUINTPTR { // uintptr to unsafe.Pointer n = walkCheckPtrArithmetic(n, init) break } } param, result := rtconvfn(n.Left.Type, n.Type) if param == Txxx { break } fn := basicnames[param] + "to" + basicnames[result] n = conv(mkcall(fn, types.Types[result], init, conv(n.Left, types.Types[param])), n.Type) case OANDNOT: n.Left = walkexpr(n.Left, init) n.Op = OAND n.Right = nod(OBITNOT, n.Right, nil) n.Right = typecheck(n.Right, ctxExpr) n.Right = walkexpr(n.Right, init) case ODIV, OMOD: n.Left = walkexpr(n.Left, init) n.Right = walkexpr(n.Right, init) // rewrite complex div into function call. et := n.Left.Type.Etype if isComplex[et] && n.Op == ODIV { t := n.Type n = mkcall("complex128div", types.Types[TCOMPLEX128], init, conv(n.Left, types.Types[TCOMPLEX128]), conv(n.Right, types.Types[TCOMPLEX128])) n = conv(n, t) break } // Nothing to do for float divisions. if isFloat[et] { break } // rewrite 64-bit div and mod on 32-bit architectures. // TODO: Remove this code once we can introduce // runtime calls late in SSA processing. if Widthreg < 8 && (et == TINT64 || et == TUINT64) { if n.Right.Op == OLITERAL { // Leave div/mod by constant powers of 2. // The SSA backend will handle those. switch et { case TINT64: c := n.Right.Int64() if c < 0 { c = -c } if c != 0 && c&(c-1) == 0 { break opswitch } case TUINT64: c := uint64(n.Right.Int64()) if c != 0 && c&(c-1) == 0 { break opswitch } } } var fn string if et == TINT64 { fn = "int64" } else { fn = "uint64" } if n.Op == ODIV { fn += "div" } else { fn += "mod" } n = mkcall(fn, n.Type, init, conv(n.Left, types.Types[et]), conv(n.Right, types.Types[et])) } case OINDEX: n.Left = walkexpr(n.Left, init) // save the original node for bounds checking elision. // If it was a ODIV/OMOD walk might rewrite it. r := n.Right n.Right = walkexpr(n.Right, init) // if range of type cannot exceed static array bound, // disable bounds check. if n.Bounded() { break } t := n.Left.Type if t != nil && t.IsPtr() { t = t.Elem() } if t.IsArray() { n.SetBounded(bounded(r, t.NumElem())) if Debug['m'] != 0 && n.Bounded() && !Isconst(n.Right, CTINT) { Warn("index bounds check elided") } if smallintconst(n.Right) && !n.Bounded() { yyerror("index out of bounds") } } else if Isconst(n.Left, CTSTR) { n.SetBounded(bounded(r, int64(len(strlit(n.Left))))) if Debug['m'] != 0 && n.Bounded() && !Isconst(n.Right, CTINT) { Warn("index bounds check elided") } if smallintconst(n.Right) && !n.Bounded() { yyerror("index out of bounds") } } if Isconst(n.Right, CTINT) { if n.Right.Val().U.(*Mpint).CmpInt64(0) < 0 || n.Right.Val().U.(*Mpint).Cmp(maxintval[TINT]) > 0 { yyerror("index out of bounds") } } case OINDEXMAP: // Replace m[k] with *map{access1,assign}(maptype, m, &k) n.Left = walkexpr(n.Left, init) n.Right = walkexpr(n.Right, init) map_ := n.Left key := n.Right t := map_.Type if n.IndexMapLValue() { // This m[k] expression is on the left-hand side of an assignment. fast := mapfast(t) if fast == mapslow { // standard version takes key by reference. // order.expr made sure key is addressable. key = nod(OADDR, key, nil) } n = mkcall1(mapfn(mapassign[fast], t), nil, init, typename(t), map_, key) } else { // m[k] is not the target of an assignment. fast := mapfast(t) if fast == mapslow { // standard version takes key by reference. // order.expr made sure key is addressable. key = nod(OADDR, key, nil) } if w := t.Elem().Width; w <= zeroValSize { n = mkcall1(mapfn(mapaccess1[fast], t), types.NewPtr(t.Elem()), init, typename(t), map_, key) } else { z := zeroaddr(w) n = mkcall1(mapfn("mapaccess1_fat", t), types.NewPtr(t.Elem()), init, typename(t), map_, key, z) } } n.Type = types.NewPtr(t.Elem()) n.SetNonNil(true) // mapaccess1* and mapassign always return non-nil pointers. n = nod(ODEREF, n, nil) n.Type = t.Elem() n.SetTypecheck(1) case ORECV: Fatalf("walkexpr ORECV") // should see inside OAS only case OSLICEHEADER: n.Left = walkexpr(n.Left, init) n.List.SetFirst(walkexpr(n.List.First(), init)) n.List.SetSecond(walkexpr(n.List.Second(), init)) case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR: checkSlice := checkPtr(Curfn, 1) && n.Op == OSLICE3ARR && n.Left.Op == OCONVNOP && n.Left.Left.Type.Etype == TUNSAFEPTR if checkSlice { n.Left.Left = walkexpr(n.Left.Left, init) } else { n.Left = walkexpr(n.Left, init) } low, high, max := n.SliceBounds() low = walkexpr(low, init) if low != nil && isZero(low) { // Reduce x[0:j] to x[:j] and x[0:j:k] to x[:j:k]. low = nil } high = walkexpr(high, init) max = walkexpr(max, init) n.SetSliceBounds(low, high, max) if checkSlice { n.Left = walkCheckPtrAlignment(n.Left, init, max) } if n.Op.IsSlice3() { if max != nil && max.Op == OCAP && samesafeexpr(n.Left, max.Left) { // Reduce x[i:j:cap(x)] to x[i:j]. if n.Op == OSLICE3 { n.Op = OSLICE } else { n.Op = OSLICEARR } n = reduceSlice(n) } } else { n = reduceSlice(n) } case ONEW: if n.Esc == EscNone { if n.Type.Elem().Width >= maxImplicitStackVarSize { Fatalf("large ONEW with EscNone: %v", n) } r := temp(n.Type.Elem()) r = nod(OAS, r, nil) // zero temp r = typecheck(r, ctxStmt) init.Append(r) r = nod(OADDR, r.Left, nil) r = typecheck(r, ctxExpr) n = r } else { n = callnew(n.Type.Elem()) } case OADDSTR: n = addstr(n, init) case OAPPEND: // order should make sure we only see OAS(node, OAPPEND), which we handle above. Fatalf("append outside assignment") case OPREPEND: // order should make sure we only see OAS(node, OPREPEND), which we handle above. Fatalf("prepend outside assignment") case OFMAP: // order should make sure we only see OAS(node, OFMAP), which we handle above. Fatalf("fmap outside assignment") case OFOLDL, OFOLDR: // order should make sure we only see OAS(node, OFOLD), which we handle above. Fatalf("fold outside assignment") case OCOPY: n = copyany(n, init, instrumenting && !compiling_runtime) // cannot use chanfn - closechan takes any, not chan any case OCLOSE: fn := syslook("closechan") fn = substArgTypes(fn, n.Left.Type) n = mkcall1(fn, nil, init, n.Left) case OMAKECHAN: // When size fits into int, use makechan instead of // makechan64, which is faster and shorter on 32 bit platforms. size := n.Left fnname := "makechan64" argtype := types.Types[TINT64] // Type checking guarantees that TIDEAL size is positive and fits in an int. // The case of size overflow when converting TUINT or TUINTPTR to TINT // will be handled by the negative range checks in makechan during runtime. if size.Type.IsKind(TIDEAL) || maxintval[size.Type.Etype].Cmp(maxintval[TUINT]) <= 0 { fnname = "makechan" argtype = types.Types[TINT] } n = mkcall1(chanfn(fnname, 1, n.Type), n.Type, init, typename(n.Type), conv(size, argtype)) case OMAKEMAP: t := n.Type hmapType := hmap(t) hint := n.Left // var h *hmap var h *Node if n.Esc == EscNone { // Allocate hmap on stack. // var hv hmap hv := temp(hmapType) zero := nod(OAS, hv, nil) zero = typecheck(zero, ctxStmt) init.Append(zero) // h = &hv h = nod(OADDR, hv, nil) // Allocate one bucket pointed to by hmap.buckets on stack if hint // is not larger than BUCKETSIZE. In case hint is larger than // BUCKETSIZE runtime.makemap will allocate the buckets on the heap. // Maximum key and elem size is 128 bytes, larger objects // are stored with an indirection. So max bucket size is 2048+eps. if !Isconst(hint, CTINT) || hint.Val().U.(*Mpint).CmpInt64(BUCKETSIZE) <= 0 { // var bv bmap bv := temp(bmap(t)) zero = nod(OAS, bv, nil) zero = typecheck(zero, ctxStmt) init.Append(zero) // b = &bv b := nod(OADDR, bv, nil) // h.buckets = b bsym := hmapType.Field(5).Sym // hmap.buckets see reflect.go:hmap na := nod(OAS, nodSym(ODOT, h, bsym), b) na = typecheck(na, ctxStmt) init.Append(na) } } if Isconst(hint, CTINT) && hint.Val().U.(*Mpint).CmpInt64(BUCKETSIZE) <= 0 { // Handling make(map[any]any) and // make(map[any]any, hint) where hint <= BUCKETSIZE // special allows for faster map initialization and // improves binary size by using calls with fewer arguments. // For hint <= BUCKETSIZE overLoadFactor(hint, 0) is false // and no buckets will be allocated by makemap. Therefore, // no buckets need to be allocated in this code path. if n.Esc == EscNone { // Only need to initialize h.hash0 since // hmap h has been allocated on the stack already. // h.hash0 = fastrand() rand := mkcall("fastrand", types.Types[TUINT32], init) hashsym := hmapType.Field(4).Sym // hmap.hash0 see reflect.go:hmap a := nod(OAS, nodSym(ODOT, h, hashsym), rand) a = typecheck(a, ctxStmt) a = walkexpr(a, init) init.Append(a) n = convnop(h, t) } else { // Call runtime.makehmap to allocate an // hmap on the heap and initialize hmap's hash0 field. fn := syslook("makemap_small") fn = substArgTypes(fn, t.Key(), t.Elem()) n = mkcall1(fn, n.Type, init) } } else { if n.Esc != EscNone { h = nodnil() } // Map initialization with a variable or large hint is // more complicated. We therefore generate a call to // runtime.makemap to initialize hmap and allocate the // map buckets. // When hint fits into int, use makemap instead of // makemap64, which is faster and shorter on 32 bit platforms. fnname := "makemap64" argtype := types.Types[TINT64] // Type checking guarantees that TIDEAL hint is positive and fits in an int. // See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function. // The case of hint overflow when converting TUINT or TUINTPTR to TINT // will be handled by the negative range checks in makemap during runtime. if hint.Type.IsKind(TIDEAL) || maxintval[hint.Type.Etype].Cmp(maxintval[TUINT]) <= 0 { fnname = "makemap" argtype = types.Types[TINT] } fn := syslook(fnname) fn = substArgTypes(fn, hmapType, t.Key(), t.Elem()) n = mkcall1(fn, n.Type, init, typename(n.Type), conv(hint, argtype), h) } case OMAKESLICE: l := n.Left r := n.Right if r == nil { r = safeexpr(l, init) l = r } t := n.Type if n.Esc == EscNone { if !isSmallMakeSlice(n) { Fatalf("non-small OMAKESLICE with EscNone: %v", n) } // var arr [r]T // n = arr[:l] i := indexconst(r) if i < 0 { Fatalf("walkexpr: invalid index %v", r) } t = types.NewArray(t.Elem(), i) // [r]T var_ := temp(t) a := nod(OAS, var_, nil) // zero temp a = typecheck(a, ctxStmt) init.Append(a) r := nod(OSLICE, var_, nil) // arr[:l] r.SetSliceBounds(nil, l, nil) r = conv(r, n.Type) // in case n.Type is named. r = typecheck(r, ctxExpr) r = walkexpr(r, init) n = r } else { // n escapes; set up a call to makeslice. // When len and cap can fit into int, use makeslice instead of // makeslice64, which is faster and shorter on 32 bit platforms. if t.Elem().NotInHeap() { yyerror("%v is go:notinheap; heap allocation disallowed", t.Elem()) } len, cap := l, r fnname := "makeslice64" argtype := types.Types[TINT64] // Type checking guarantees that TIDEAL len/cap are positive and fit in an int. // The case of len or cap overflow when converting TUINT or TUINTPTR to TINT // will be handled by the negative range checks in makeslice during runtime. if (len.Type.IsKind(TIDEAL) || maxintval[len.Type.Etype].Cmp(maxintval[TUINT]) <= 0) && (cap.Type.IsKind(TIDEAL) || maxintval[cap.Type.Etype].Cmp(maxintval[TUINT]) <= 0) { fnname = "makeslice" argtype = types.Types[TINT] } m := nod(OSLICEHEADER, nil, nil) m.Type = t fn := syslook(fnname) m.Left = mkcall1(fn, types.Types[TUNSAFEPTR], init, typename(t.Elem()), conv(len, argtype), conv(cap, argtype)) m.Left.SetNonNil(true) m.List.Set2(conv(len, types.Types[TINT]), conv(cap, types.Types[TINT])) m = typecheck(m, ctxExpr) m = walkexpr(m, init) n = m } case ORUNESTR: a := nodnil() if n.Esc == EscNone { t := types.NewArray(types.Types[TUINT8], 4) a = nod(OADDR, temp(t), nil) } // intstring(*[4]byte, rune) n = mkcall("intstring", n.Type, init, a, conv(n.Left, types.Types[TINT64])) case OBYTES2STR, ORUNES2STR: a := nodnil() if n.Esc == EscNone { // Create temporary buffer for string on stack. t := types.NewArray(types.Types[TUINT8], tmpstringbufsize) a = nod(OADDR, temp(t), nil) } fn := "slicebytetostring" if n.Op == ORUNES2STR { fn = "slicerunetostring" } // slicebytetostring(*[32]byte, []byte) string // slicerunetostring(*[32]byte, []rune) string n = mkcall(fn, n.Type, init, a, n.Left) case OBYTES2STRTMP: n.Left = walkexpr(n.Left, init) if !instrumenting { // Let the backend handle OBYTES2STRTMP directly // to avoid a function call to slicebytetostringtmp. break } // slicebytetostringtmp([]byte) string n = mkcall("slicebytetostringtmp", n.Type, init, n.Left) case OSTR2BYTES: s := n.Left if Isconst(s, CTSTR) { sc := strlit(s) // Allocate a [n]byte of the right size. t := types.NewArray(types.Types[TUINT8], int64(len(sc))) var a *Node if n.Esc == EscNone && len(sc) <= int(maxImplicitStackVarSize) { a = nod(OADDR, temp(t), nil) } else { a = callnew(t) } p := temp(t.PtrTo()) // *[n]byte init.Append(typecheck(nod(OAS, p, a), ctxStmt)) // Copy from the static string data to the [n]byte. if len(sc) > 0 { as := nod(OAS, nod(ODEREF, p, nil), nod(ODEREF, convnop(nod(OSPTR, s, nil), t.PtrTo()), nil)) as = typecheck(as, ctxStmt) as = walkstmt(as) init.Append(as) } // Slice the [n]byte to a []byte. n.Op = OSLICEARR n.Left = p n = walkexpr(n, init) break } a := nodnil() if n.Esc == EscNone { // Create temporary buffer for slice on stack. t := types.NewArray(types.Types[TUINT8], tmpstringbufsize) a = nod(OADDR, temp(t), nil) } // stringtoslicebyte(*32[byte], string) []byte n = mkcall("stringtoslicebyte", n.Type, init, a, conv(s, types.Types[TSTRING])) case OSTR2BYTESTMP: // []byte(string) conversion that creates a slice // referring to the actual string bytes. // This conversion is handled later by the backend and // is only for use by internal compiler optimizations // that know that the slice won't be mutated. // The only such case today is: // for i, c := range []byte(string) n.Left = walkexpr(n.Left, init) case OSTR2RUNES: a := nodnil() if n.Esc == EscNone { // Create temporary buffer for slice on stack. t := types.NewArray(types.Types[TINT32], tmpstringbufsize) a = nod(OADDR, temp(t), nil) } // stringtoslicerune(*[32]rune, string) []rune n = mkcall("stringtoslicerune", n.Type, init, a, conv(n.Left, types.Types[TSTRING])) case OARRAYLIT, OSLICELIT, OMAPLIT, OSTRUCTLIT, OPTRLIT: if isStaticCompositeLiteral(n) && !canSSAType(n.Type) { // n can be directly represented in the read-only data section. // Make direct reference to the static data. See issue 12841. vstat := staticname(n.Type) vstat.Name.SetReadonly(true) fixedlit(inInitFunction, initKindStatic, n, vstat, init) n = vstat n = typecheck(n, ctxExpr) break } var_ := temp(n.Type) anylit(n, var_, init) n = var_ case OSEND: n1 := n.Right n1 = assignconv(n1, n.Left.Type.Elem(), "chan send") n1 = walkexpr(n1, init) n1 = nod(OADDR, n1, nil) n = mkcall1(chanfn("chansend1", 2, n.Left.Type), nil, init, n.Left, n1) case OCLOSURE: n = walkclosure(n, init) case OCALLPART: n = walkpartialcall(n, init) } // Expressions that are constant at run time but not // considered const by the language spec are not turned into // constants until walk. For example, if n is y%1 == 0, the // walk of y%1 may have replaced it by 0. // Check whether n with its updated args is itself now a constant. t := n.Type evconst(n) if n.Type != t { Fatalf("evconst changed Type: %v had type %v, now %v", n, t, n.Type) } if n.Op == OLITERAL { n = typecheck(n, ctxExpr) // Emit string symbol now to avoid emitting // any concurrently during the backend. if s, ok := n.Val().U.(string); ok { _ = stringsym(n.Pos, s) } } updateHasCall(n) if Debug['w'] != 0 && n != nil { Dump("after walk expr", n) } lineno = lno return n } // rtconvfn returns the parameter and result types that will be used by a // runtime function to convert from type src to type dst. The runtime function // name can be derived from the names of the returned types. // // If no such function is necessary, it returns (Txxx, Txxx). func rtconvfn(src, dst *types.Type) (param, result types.EType) { if thearch.SoftFloat { return Txxx, Txxx } switch thearch.LinkArch.Family { case sys.ARM, sys.MIPS: if src.IsFloat() { switch dst.Etype { case TINT64, TUINT64: return TFLOAT64, dst.Etype } } if dst.IsFloat() { switch src.Etype { case TINT64, TUINT64: return src.Etype, TFLOAT64 } } case sys.I386: if src.IsFloat() { switch dst.Etype { case TINT64, TUINT64: return TFLOAT64, dst.Etype case TUINT32, TUINT, TUINTPTR: return TFLOAT64, TUINT32 } } if dst.IsFloat() { switch src.Etype { case TINT64, TUINT64: return src.Etype, TFLOAT64 case TUINT32, TUINT, TUINTPTR: return TUINT32, TFLOAT64 } } } return Txxx, Txxx } // TODO(josharian): combine this with its caller and simplify func reduceSlice(n *Node) *Node { low, high, max := n.SliceBounds() if high != nil && high.Op == OLEN && samesafeexpr(n.Left, high.Left) { // Reduce x[i:len(x)] to x[i:]. high = nil } n.SetSliceBounds(low, high, max) if (n.Op == OSLICE || n.Op == OSLICESTR) && low == nil && high == nil { // Reduce x[:] to x. if Debug_slice > 0 { Warn("slice: omit slice operation") } return n.Left } return n } func ascompatee1(l *Node, r *Node, init *Nodes) *Node { // convas will turn map assigns into function calls, // making it impossible for reorder3 to work. n := nod(OAS, l, r) if l.Op == OINDEXMAP { return n } return convas(n, init) } func ascompatee(op Op, nl, nr []*Node, init *Nodes) []*Node { // check assign expression list to // an expression list. called in // expr-list = expr-list // ensure order of evaluation for function calls for i := range nl { nl[i] = safeexpr(nl[i], init) } for i1 := range nr { nr[i1] = safeexpr(nr[i1], init) } var nn []*Node i := 0 for ; i < len(nl); i++ { if i >= len(nr) { break } // Do not generate 'x = x' during return. See issue 4014. if op == ORETURN && samesafeexpr(nl[i], nr[i]) { continue } nn = append(nn, ascompatee1(nl[i], nr[i], init)) } // cannot happen: caller checked that lists had same length if i < len(nl) || i < len(nr) { var nln, nrn Nodes nln.Set(nl) nrn.Set(nr) Fatalf("error in shape across %+v %v %+v / %d %d [%s]", nln, op, nrn, len(nl), len(nr), Curfn.funcname()) } return nn } // fncall reports whether assigning an rvalue of type rt to an lvalue l might involve a function call. func fncall(l *Node, rt *types.Type) bool { if l.HasCall() || l.Op == OINDEXMAP { return true } if types.Identical(l.Type, rt) { return false } // There might be a conversion required, which might involve a runtime call. return true } // check assign type list to // an expression list. called in // expr-list = func() func ascompatet(nl Nodes, nr *types.Type) []*Node { if nl.Len() != nr.NumFields() { Fatalf("ascompatet: assignment count mismatch: %d = %d", nl.Len(), nr.NumFields()) } var nn, mm Nodes for i, l := range nl.Slice() { if l.isBlank() { continue } r := nr.Field(i) // Any assignment to an lvalue that might cause a function call must be // deferred until all the returned values have been read. if fncall(l, r.Type) { tmp := temp(r.Type) tmp = typecheck(tmp, ctxExpr) a := nod(OAS, l, tmp) a = convas(a, &mm) mm.Append(a) l = tmp } res := nod(ORESULT, nil, nil) res.Xoffset = Ctxt.FixedFrameSize() + r.Offset res.Type = r.Type res.SetTypecheck(1) a := nod(OAS, l, res) a = convas(a, &nn) updateHasCall(a) if a.HasCall() { Dump("ascompatet ucount", a) Fatalf("ascompatet: too many function calls evaluating parameters") } nn.Append(a) } return append(nn.Slice(), mm.Slice()...) } // package all the arguments that match a ... T parameter into a []T. func mkdotargslice(typ *types.Type, args []*Node, init *Nodes, ddd *Node) *Node { esc := uint16(EscUnknown) if ddd != nil { esc = ddd.Esc } if len(args) == 0 { n := nodnil() n.Type = typ return n } n := nod(OCOMPLIT, nil, typenod(typ)) if ddd != nil && prealloc[ddd] != nil { prealloc[n] = prealloc[ddd] // temporary to use } n.List.Set(args) n.Esc = esc n = typecheck(n, ctxExpr) if n.Type == nil { Fatalf("mkdotargslice: typecheck failed") } n = walkexpr(n, init) return n } func walkCall(n *Node, init *Nodes) { if n.Rlist.Len() != 0 { return // already walked } n.Left = walkexpr(n.Left, init) walkexprlist(n.List.Slice(), init) params := n.Left.Type.Params() args := n.List.Slice() // If there's a ... parameter (which is only valid as the final // parameter) and this is not a ... call expression, // then assign the remaining arguments as a slice. if nf := params.NumFields(); nf > 0 { if last := params.Field(nf - 1); last.IsDDD() && !n.IsDDD() { // The callsite does not use a ..., but the called function is declared // with a final argument that has a ... . Build the slice that we will // pass as the ... argument. tail := args[nf-1:] slice := mkdotargslice(last.Type, tail, init, n.Right) // Allow immediate GC. for i := range tail { tail[i] = nil } args = append(args[:nf-1], slice) } } // If this is a method call, add the receiver at the beginning of the args. if n.Op == OCALLMETH { withRecv := make([]*Node, len(args)+1) withRecv[0] = n.Left.Left n.Left.Left = nil copy(withRecv[1:], args) args = withRecv } // For any argument whose evaluation might require a function call, // store that argument into a temporary variable, // to prevent that calls from clobbering arguments already on the stack. // When instrumenting, all arguments might require function calls. var tempAssigns []*Node for i, arg := range args { updateHasCall(arg) // Determine param type. var t *types.Type if n.Op == OCALLMETH { if i == 0 { t = n.Left.Type.Recv().Type } else { t = params.Field(i - 1).Type } } else { t = params.Field(i).Type } if instrumenting || fncall(arg, t) { // make assignment of fncall to tempAt tmp := temp(t) a := nod(OAS, tmp, arg) a = convas(a, init) tempAssigns = append(tempAssigns, a) // replace arg with temp args[i] = tmp } } n.List.Set(tempAssigns) n.Rlist.Set(args) } // generate code for print func walkprint(nn *Node, init *Nodes) *Node { // Hoist all the argument evaluation up before the lock. walkexprlistcheap(nn.List.Slice(), init) // For println, add " " between elements and "\n" at the end. if nn.Op == OPRINTN { s := nn.List.Slice() t := make([]*Node, 0, len(s)*2) for i, n := range s { if i != 0 { t = append(t, nodstr(" ")) } t = append(t, n) } t = append(t, nodstr("\n")) nn.List.Set(t) } // Collapse runs of constant strings. s := nn.List.Slice() t := make([]*Node, 0, len(s)) for i := 0; i < len(s); { var strs []string for i < len(s) && Isconst(s[i], CTSTR) { strs = append(strs, strlit(s[i])) i++ } if len(strs) > 0 { t = append(t, nodstr(strings.Join(strs, ""))) } if i < len(s) { t = append(t, s[i]) i++ } } nn.List.Set(t) calls := []*Node{mkcall("printlock", nil, init)} for i, n := range nn.List.Slice() { if n.Op == OLITERAL { switch n.Val().Ctype() { case CTRUNE: n = defaultlit(n, types.Runetype) case CTINT: n = defaultlit(n, types.Types[TINT64]) case CTFLT: n = defaultlit(n, types.Types[TFLOAT64]) } } if n.Op != OLITERAL && n.Type != nil && n.Type.Etype == TIDEAL { n = defaultlit(n, types.Types[TINT64]) } n = defaultlit(n, nil) nn.List.SetIndex(i, n) if n.Type == nil || n.Type.Etype == TFORW { continue } var on *Node switch n.Type.Etype { case TINTER: if n.Type.IsEmptyInterface() { on = syslook("printeface") } else { on = syslook("printiface") } on = substArgTypes(on, n.Type) // any-1 case TPTR, TCHAN, TMAP, TFUNC, TUNSAFEPTR: on = syslook("printpointer") on = substArgTypes(on, n.Type) // any-1 case TSLICE: on = syslook("printslice") on = substArgTypes(on, n.Type) // any-1 case TUINT, TUINT8, TUINT16, TUINT32, TUINT64, TUINTPTR: if isRuntimePkg(n.Type.Sym.Pkg) && n.Type.Sym.Name == "hex" { on = syslook("printhex") } else { on = syslook("printuint") } case TINT, TINT8, TINT16, TINT32, TINT64: on = syslook("printint") case TFLOAT32, TFLOAT64: on = syslook("printfloat") case TCOMPLEX64, TCOMPLEX128: on = syslook("printcomplex") case TBOOL: on = syslook("printbool") case TSTRING: cs := "" if Isconst(n, CTSTR) { cs = strlit(n) } switch cs { case " ": on = syslook("printsp") case "\n": on = syslook("printnl") default: on = syslook("printstring") } default: badtype(OPRINT, n.Type, nil) continue } r := nod(OCALL, on, nil) if params := on.Type.Params().FieldSlice(); len(params) > 0 { t := params[0].Type if !types.Identical(t, n.Type) { n = nod(OCONV, n, nil) n.Type = t } r.List.Append(n) } calls = append(calls, r) } calls = append(calls, mkcall("printunlock", nil, init)) typecheckslice(calls, ctxStmt) walkexprlist(calls, init) r := nod(OEMPTY, nil, nil) r = typecheck(r, ctxStmt) r = walkexpr(r, init) r.Ninit.Set(calls) return r } func callnew(t *types.Type) *Node { if t.NotInHeap() { yyerror("%v is go:notinheap; heap allocation disallowed", t) } dowidth(t) n := nod(ONEWOBJ, typename(t), nil) n.Type = types.NewPtr(t) n.SetTypecheck(1) n.SetNonNil(true) return n } // isReflectHeaderDataField reports whether l is an expression p.Data // where p has type reflect.SliceHeader or reflect.StringHeader. func isReflectHeaderDataField(l *Node) bool { if l.Type != types.Types[TUINTPTR] { return false } var tsym *types.Sym switch l.Op { case ODOT: tsym = l.Left.Type.Sym case ODOTPTR: tsym = l.Left.Type.Elem().Sym default: return false } if tsym == nil || l.Sym.Name != "Data" || tsym.Pkg.Path != "reflect" { return false } return tsym.Name == "SliceHeader" || tsym.Name == "StringHeader" } func convas(n *Node, init *Nodes) *Node { if n.Op != OAS { Fatalf("convas: not OAS %v", n.Op) } defer updateHasCall(n) n.SetTypecheck(1) if n.Left == nil || n.Right == nil { return n } lt := n.Left.Type rt := n.Right.Type if lt == nil || rt == nil { return n } if n.Left.isBlank() { n.Right = defaultlit(n.Right, nil) return n } if !types.Identical(lt, rt) { n.Right = assignconv(n.Right, lt, "assignment") n.Right = walkexpr(n.Right, init) } dowidth(n.Right.Type) return n } // from ascompat[ee] // a,b = c,d // simultaneous assignment. there cannot // be later use of an earlier lvalue. // // function calls have been removed. func reorder3(all []*Node) []*Node { // If a needed expression may be affected by an // earlier assignment, make an early copy of that // expression and use the copy instead. var early []*Node var mapinit Nodes for i, n := range all { l := n.Left // Save subexpressions needed on left side. // Drill through non-dereferences. for { if l.Op == ODOT || l.Op == OPAREN { l = l.Left continue } if l.Op == OINDEX && l.Left.Type.IsArray() { l.Right = reorder3save(l.Right, all, i, &early) l = l.Left continue } break } switch l.Op { default: Fatalf("reorder3 unexpected lvalue %#v", l.Op) case ONAME: break case OINDEX, OINDEXMAP: l.Left = reorder3save(l.Left, all, i, &early) l.Right = reorder3save(l.Right, all, i, &early) if l.Op == OINDEXMAP { all[i] = convas(all[i], &mapinit) } case ODEREF, ODOTPTR: l.Left = reorder3save(l.Left, all, i, &early) } // Save expression on right side. all[i].Right = reorder3save(all[i].Right, all, i, &early) } early = append(mapinit.Slice(), early...) return append(early, all...) } // if the evaluation of *np would be affected by the // assignments in all up to but not including the ith assignment, // copy into a temporary during *early and // replace *np with that temp. // The result of reorder3save MUST be assigned back to n, e.g. // n.Left = reorder3save(n.Left, all, i, early) func reorder3save(n *Node, all []*Node, i int, early *[]*Node) *Node { if !aliased(n, all, i) { return n } q := temp(n.Type) q = nod(OAS, q, n) q = typecheck(q, ctxStmt) *early = append(*early, q) return q.Left } // what's the outer value that a write to n affects? // outer value means containing struct or array. func outervalue(n *Node) *Node { for { switch n.Op { case OXDOT: Fatalf("OXDOT in walk") case ODOT, OPAREN, OCONVNOP: n = n.Left continue case OINDEX: if n.Left.Type != nil && n.Left.Type.IsArray() { n = n.Left continue } } return n } } // Is it possible that the computation of n might be // affected by writes in as up to but not including the ith element? func aliased(n *Node, all []*Node, i int) bool { if n == nil { return false } // Treat all fields of a struct as referring to the whole struct. // We could do better but we would have to keep track of the fields. for n.Op == ODOT { n = n.Left } // Look for obvious aliasing: a variable being assigned // during the all list and appearing in n. // Also record whether there are any writes to main memory. // Also record whether there are any writes to variables // whose addresses have been taken. memwrite := false varwrite := false for _, an := range all[:i] { a := outervalue(an.Left) for a.Op == ODOT { a = a.Left } if a.Op != ONAME { memwrite = true continue } switch n.Class() { default: varwrite = true continue case PAUTO, PPARAM, PPARAMOUT: if n.Name.Addrtaken() { varwrite = true continue } if vmatch2(a, n) { // Direct hit. return true } } } // The variables being written do not appear in n. // However, n might refer to computed addresses // that are being written. // If no computed addresses are affected by the writes, no aliasing. if !memwrite && !varwrite { return false } // If n does not refer to computed addresses // (that is, if n only refers to variables whose addresses // have not been taken), no aliasing. if varexpr(n) { return false } // Otherwise, both the writes and n refer to computed memory addresses. // Assume that they might conflict. return true } // does the evaluation of n only refer to variables // whose addresses have not been taken? // (and no other memory) func varexpr(n *Node) bool { if n == nil { return true } switch n.Op { case OLITERAL: return true case ONAME: switch n.Class() { case PAUTO, PPARAM, PPARAMOUT: if !n.Name.Addrtaken() { return true } } return false case OADD, OSUB, OOR, OXOR, OMUL, ODIV, OMOD, OLSH, ORSH, OAND, OANDNOT, OPLUS, ONEG, OBITNOT, OPAREN, OANDAND, OOROR, OCONV, OCONVNOP, OCONVIFACE, ODOTTYPE: return varexpr(n.Left) && varexpr(n.Right) case ODOT: // but not ODOTPTR // Should have been handled in aliased. Fatalf("varexpr unexpected ODOT") } // Be conservative. return false } // is the name l mentioned in r? func vmatch2(l *Node, r *Node) bool { if r == nil { return false } switch r.Op { // match each right given left case ONAME: return l == r case OLITERAL: return false } if vmatch2(l, r.Left) { return true } if vmatch2(l, r.Right) { return true } for _, n := range r.List.Slice() { if vmatch2(l, n) { return true } } return false } // is any name mentioned in l also mentioned in r? // called by sinit.go func vmatch1(l *Node, r *Node) bool { // isolate all left sides if l == nil || r == nil { return false } switch l.Op { case ONAME: switch l.Class() { case PPARAM, PAUTO: break default: // assignment to non-stack variable must be // delayed if right has function calls. if r.HasCall() { return true } } return vmatch2(l, r) case OLITERAL: return false } if vmatch1(l.Left, r) { return true } if vmatch1(l.Right, r) { return true } for _, n := range l.List.Slice() { if vmatch1(n, r) { return true } } return false } // paramstoheap returns code to allocate memory for heap-escaped parameters // and to copy non-result parameters' values from the stack. func paramstoheap(params *types.Type) []*Node { var nn []*Node for _, t := range params.Fields().Slice() { v := asNode(t.Nname) if v != nil && v.Sym != nil && strings.HasPrefix(v.Sym.Name, "~r") { // unnamed result v = nil } if v == nil { continue } if stackcopy := v.Name.Param.Stackcopy; stackcopy != nil { nn = append(nn, walkstmt(nod(ODCL, v, nil))) if stackcopy.Class() == PPARAM { nn = append(nn, walkstmt(typecheck(nod(OAS, v, stackcopy), ctxStmt))) } } } return nn } // zeroResults zeros the return values at the start of the function. // We need to do this very early in the function. Defer might stop a // panic and show the return values as they exist at the time of // panic. For precise stacks, the garbage collector assumes results // are always live, so we need to zero them before any allocations, // even allocations to move params/results to the heap. // The generated code is added to Curfn's Enter list. func zeroResults() { for _, f := range Curfn.Type.Results().Fields().Slice() { v := asNode(f.Nname) if v != nil && v.Name.Param.Heapaddr != nil { // The local which points to the return value is the // thing that needs zeroing. This is already handled // by a Needzero annotation in plive.go:livenessepilogue. continue } if v.isParamHeapCopy() { // TODO(josharian/khr): Investigate whether we can switch to "continue" here, // and document more in either case. // In the review of CL 114797, Keith wrote (roughly): // I don't think the zeroing below matters. // The stack return value will never be marked as live anywhere in the function. // It is not written to until deferreturn returns. v = v.Name.Param.Stackcopy } // Zero the stack location containing f. Curfn.Func.Enter.Append(nodl(Curfn.Pos, OAS, v, nil)) } } // returnsfromheap returns code to copy values for heap-escaped parameters // back to the stack. func returnsfromheap(params *types.Type) []*Node { var nn []*Node for _, t := range params.Fields().Slice() { v := asNode(t.Nname) if v == nil { continue } if stackcopy := v.Name.Param.Stackcopy; stackcopy != nil && stackcopy.Class() == PPARAMOUT { nn = append(nn, walkstmt(typecheck(nod(OAS, stackcopy, v), ctxStmt))) } } return nn } // heapmoves generates code to handle migrating heap-escaped parameters // between the stack and the heap. The generated code is added to Curfn's // Enter and Exit lists. func heapmoves() { lno := lineno lineno = Curfn.Pos nn := paramstoheap(Curfn.Type.Recvs()) nn = append(nn, paramstoheap(Curfn.Type.Params())...) nn = append(nn, paramstoheap(Curfn.Type.Results())...) Curfn.Func.Enter.Append(nn...) lineno = Curfn.Func.Endlineno Curfn.Func.Exit.Append(returnsfromheap(Curfn.Type.Results())...) lineno = lno } func vmkcall(fn *Node, t *types.Type, init *Nodes, va []*Node) *Node { if fn.Type == nil || fn.Type.Etype != TFUNC { Fatalf("mkcall %v %v", fn, fn.Type) } n := fn.Type.NumParams() if n != len(va) { Fatalf("vmkcall %v needs %v args got %v", fn, n, len(va)) } r := nod(OCALL, fn, nil) r.List.Set(va) if fn.Type.NumResults() > 0 { r = typecheck(r, ctxExpr|ctxMultiOK) } else { r = typecheck(r, ctxStmt) } r = walkexpr(r, init) r.Type = t return r } func mkcall(name string, t *types.Type, init *Nodes, args ...*Node) *Node { return vmkcall(syslook(name), t, init, args) } func mkcall1(fn *Node, t *types.Type, init *Nodes, args ...*Node) *Node { return vmkcall(fn, t, init, args) } func conv(n *Node, t *types.Type) *Node { if types.Identical(n.Type, t) { return n } n = nod(OCONV, n, nil) n.Type = t n = typecheck(n, ctxExpr) return n } // convnop converts node n to type t using the OCONVNOP op // and typechecks the result with ctxExpr. func convnop(n *Node, t *types.Type) *Node { if types.Identical(n.Type, t) { return n } n = nod(OCONVNOP, n, nil) n.Type = t n = typecheck(n, ctxExpr) return n } // byteindex converts n, which is byte-sized, to a uint8. // We cannot use conv, because we allow converting bool to uint8 here, // which is forbidden in user code. func byteindex(n *Node) *Node { if types.Identical(n.Type, types.Types[TUINT8]) { return n } n = nod(OCONV, n, nil) n.Type = types.Types[TUINT8] n.SetTypecheck(1) return n } func chanfn(name string, n int, t *types.Type) *Node { if !t.IsChan() { Fatalf("chanfn %v", t) } fn := syslook(name) switch n { default: Fatalf("chanfn %d", n) case 1: fn = substArgTypes(fn, t.Elem()) case 2: fn = substArgTypes(fn, t.Elem(), t.Elem()) } return fn } func mapfn(name string, t *types.Type) *Node { if !t.IsMap() { Fatalf("mapfn %v", t) } fn := syslook(name) fn = substArgTypes(fn, t.Key(), t.Elem(), t.Key(), t.Elem()) return fn } func mapfndel(name string, t *types.Type) *Node { if !t.IsMap() { Fatalf("mapfn %v", t) } fn := syslook(name) fn = substArgTypes(fn, t.Key(), t.Elem(), t.Key()) return fn } const ( mapslow = iota mapfast32 mapfast32ptr mapfast64 mapfast64ptr mapfaststr nmapfast ) type mapnames [nmapfast]string func mkmapnames(base string, ptr string) mapnames { return mapnames{base, base + "_fast32", base + "_fast32" + ptr, base + "_fast64", base + "_fast64" + ptr, base + "_faststr"} } var mapaccess1 = mkmapnames("mapaccess1", "") var mapaccess2 = mkmapnames("mapaccess2", "") var mapassign = mkmapnames("mapassign", "ptr") var mapdelete = mkmapnames("mapdelete", "") func mapfast(t *types.Type) int { // Check runtime/map.go:maxElemSize before changing. if t.Elem().Width > 128 { return mapslow } switch algtype(t.Key()) { case AMEM32: if !t.Key().HasHeapPointer() { return mapfast32 } if Widthptr == 4 { return mapfast32ptr } Fatalf("small pointer %v", t.Key()) case AMEM64: if !t.Key().HasHeapPointer() { return mapfast64 } if Widthptr == 8 { return mapfast64ptr } // Two-word object, at least one of which is a pointer. // Use the slow path. case ASTRING: return mapfaststr } return mapslow } func writebarrierfn(name string, l *types.Type, r *types.Type) *Node { fn := syslook(name) fn = substArgTypes(fn, l, r) return fn } func addstr(n *Node, init *Nodes) *Node { // order.expr rewrote OADDSTR to have a list of strings. c := n.List.Len() if c < 2 { Fatalf("addstr count %d too small", c) } buf := nodnil() if n.Esc == EscNone { sz := int64(0) for _, n1 := range n.List.Slice() { if n1.Op == OLITERAL { sz += int64(len(strlit(n1))) } } // Don't allocate the buffer if the result won't fit. if sz < tmpstringbufsize { // Create temporary buffer for result string on stack. t := types.NewArray(types.Types[TUINT8], tmpstringbufsize) buf = nod(OADDR, temp(t), nil) } } // build list of string arguments args := []*Node{buf} for _, n2 := range n.List.Slice() { args = append(args, conv(n2, types.Types[TSTRING])) } var fn string if c <= 5 { // small numbers of strings use direct runtime helpers. // note: order.expr knows this cutoff too. fn = fmt.Sprintf("concatstring%d", c) } else { // large numbers of strings are passed to the runtime as a slice. fn = "concatstrings" t := types.NewSlice(types.Types[TSTRING]) slice := nod(OCOMPLIT, nil, typenod(t)) if prealloc[n] != nil { prealloc[slice] = prealloc[n] } slice.List.Set(args[1:]) // skip buf arg args = []*Node{buf, slice} slice.Esc = EscNone } cat := syslook(fn) r := nod(OCALL, cat, nil) r.List.Set(args) r = typecheck(r, ctxExpr) r = walkexpr(r, init) r.Type = n.Type return r } func walkAppendArgs(n *Node, init *Nodes) { walkexprlistsafe(n.List.Slice(), init) // walkexprlistsafe will leave OINDEX (s[n]) alone if both s // and n are name or literal, but those may index the slice we're // modifying here. Fix explicitly. ls := n.List.Slice() for i1, n1 := range ls { ls[i1] = cheapexpr(n1, init) } } // expand append(l1, l2...) to // init { // s := l1 // n := len(s) + len(l2) // // Compare as uint so growslice can panic on overflow. // if uint(n) > uint(cap(s)) { // s = growslice(s, n) // } // s = s[:n] // memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T)) // } // s // // l2 is allowed to be a string. func appendslice(n *Node, init *Nodes) *Node { walkAppendArgs(n, init) l1 := n.List.First() l2 := n.List.Second() var nodes Nodes // var s []T s := temp(l1.Type) nodes.Append(nod(OAS, s, l1)) // s = l1 elemtype := s.Type.Elem() // n := len(s) + len(l2) nn := temp(types.Types[TINT]) nodes.Append(nod(OAS, nn, nod(OADD, nod(OLEN, s, nil), nod(OLEN, l2, nil)))) // if uint(n) > uint(cap(s)) nif := nod(OIF, nil, nil) nuint := conv(nn, types.Types[TUINT]) scapuint := conv(nod(OCAP, s, nil), types.Types[TUINT]) nif.Left = nod(OGT, nuint, scapuint) // instantiate growslice(typ *type, []any, int) []any fn := syslook("growslice") fn = substArgTypes(fn, elemtype, elemtype) // s = growslice(T, s, n) nif.Nbody.Set1(nod(OAS, s, mkcall1(fn, s.Type, &nif.Ninit, typename(elemtype), s, nn))) nodes.Append(nif) // s = s[:n] nt := nod(OSLICE, s, nil) nt.SetSliceBounds(nil, nn, nil) nt.SetBounded(true) nodes.Append(nod(OAS, s, nt)) var ncopy *Node if elemtype.HasHeapPointer() { // copy(s[len(l1):], l2) nptr1 := nod(OSLICE, s, nil) nptr1.SetSliceBounds(nod(OLEN, l1, nil), nil, nil) nptr2 := l2 Curfn.Func.setWBPos(n.Pos) // instantiate typedslicecopy(typ *type, dst any, src any) int fn := syslook("typedslicecopy") fn = substArgTypes(fn, l1.Type, l2.Type) ncopy = mkcall1(fn, types.Types[TINT], &nodes, typename(elemtype), nptr1, nptr2) } else if instrumenting && !compiling_runtime { // rely on runtime to instrument copy. // copy(s[len(l1):], l2) nptr1 := nod(OSLICE, s, nil) nptr1.SetSliceBounds(nod(OLEN, l1, nil), nil, nil) nptr2 := l2 if l2.Type.IsString() { // instantiate func slicestringcopy(to any, fr any) int fn := syslook("slicestringcopy") fn = substArgTypes(fn, l1.Type, l2.Type) ncopy = mkcall1(fn, types.Types[TINT], &nodes, nptr1, nptr2) } else { // instantiate func slicecopy(to any, fr any, wid uintptr) int fn := syslook("slicecopy") fn = substArgTypes(fn, l1.Type, l2.Type) ncopy = mkcall1(fn, types.Types[TINT], &nodes, nptr1, nptr2, nodintconst(elemtype.Width)) } } else { // memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T)) nptr1 := nod(OINDEX, s, nod(OLEN, l1, nil)) nptr1.SetBounded(true) nptr1 = nod(OADDR, nptr1, nil) nptr2 := nod(OSPTR, l2, nil) nwid := cheapexpr(conv(nod(OLEN, l2, nil), types.Types[TUINTPTR]), &nodes) nwid = nod(OMUL, nwid, nodintconst(elemtype.Width)) // instantiate func memmove(to *any, frm *any, length uintptr) fn := syslook("memmove") fn = substArgTypes(fn, elemtype, elemtype) ncopy = mkcall1(fn, nil, &nodes, nptr1, nptr2, nwid) } ln := append(nodes.Slice(), ncopy) typecheckslice(ln, ctxStmt) walkstmtlist(ln) init.Append(ln...) return s } // isAppendOfMake reports whether n is of the form append(x , make([]T, y)...). // isAppendOfMake assumes n has already been typechecked. func isAppendOfMake(n *Node) bool { if Debug['N'] != 0 || instrumenting { return false } if n.Typecheck() == 0 { Fatalf("missing typecheck: %+v", n) } if n.Op != OAPPEND || !n.IsDDD() || n.List.Len() != 2 { return false } second := n.List.Second() if second.Op != OMAKESLICE || second.Right != nil { return false } // y must be either an integer constant or the largest possible positive value // of variable y needs to fit into an uint. // typecheck made sure that constant arguments to make are not negative and fit into an int. // The care of overflow of the len argument to make will be handled by an explicit check of int(len) < 0 during runtime. y := second.Left if !Isconst(y, CTINT) && maxintval[y.Type.Etype].Cmp(maxintval[TUINT]) > 0 { return false } return true } // extendslice rewrites append(l1, make([]T, l2)...) to // init { // if l2 >= 0 { // Empty if block here for more meaningful node.SetLikely(true) // } else { // panicmakeslicelen() // } // s := l1 // n := len(s) + l2 // // Compare n and s as uint so growslice can panic on overflow of len(s) + l2. // // cap is a positive int and n can become negative when len(s) + l2 // // overflows int. Interpreting n when negative as uint makes it larger // // than cap(s). growslice will check the int n arg and panic if n is // // negative. This prevents the overflow from being undetected. // if uint(n) > uint(cap(s)) { // s = growslice(T, s, n) // } // s = s[:n] // lptr := &l1[0] // sptr := &s[0] // if lptr == sptr || !hasPointers(T) { // // growslice did not clear the whole underlying array (or did not get called) // hp := &s[len(l1)] // hn := l2 * sizeof(T) // memclr(hp, hn) // } // } // s func extendslice(n *Node, init *Nodes) *Node { // isAppendOfMake made sure all possible positive values of l2 fit into an uint. // The case of l2 overflow when converting from e.g. uint to int is handled by an explicit // check of l2 < 0 at runtime which is generated below. l2 := conv(n.List.Second().Left, types.Types[TINT]) l2 = typecheck(l2, ctxExpr) n.List.SetSecond(l2) // walkAppendArgs expects l2 in n.List.Second(). walkAppendArgs(n, init) l1 := n.List.First() l2 = n.List.Second() // re-read l2, as it may have been updated by walkAppendArgs var nodes []*Node // if l2 >= 0 (likely happens), do nothing nifneg := nod(OIF, nod(OGE, l2, nodintconst(0)), nil) nifneg.SetLikely(true) // else panicmakeslicelen() nifneg.Rlist.Set1(mkcall("panicmakeslicelen", nil, init)) nodes = append(nodes, nifneg) // s := l1 s := temp(l1.Type) nodes = append(nodes, nod(OAS, s, l1)) elemtype := s.Type.Elem() // n := len(s) + l2 nn := temp(types.Types[TINT]) nodes = append(nodes, nod(OAS, nn, nod(OADD, nod(OLEN, s, nil), l2))) // if uint(n) > uint(cap(s)) nuint := conv(nn, types.Types[TUINT]) capuint := conv(nod(OCAP, s, nil), types.Types[TUINT]) nif := nod(OIF, nod(OGT, nuint, capuint), nil) // instantiate growslice(typ *type, old []any, newcap int) []any fn := syslook("growslice") fn = substArgTypes(fn, elemtype, elemtype) // s = growslice(T, s, n) nif.Nbody.Set1(nod(OAS, s, mkcall1(fn, s.Type, &nif.Ninit, typename(elemtype), s, nn))) nodes = append(nodes, nif) // s = s[:n] nt := nod(OSLICE, s, nil) nt.SetSliceBounds(nil, nn, nil) nt.SetBounded(true) nodes = append(nodes, nod(OAS, s, nt)) // lptr := &l1[0] l1ptr := temp(l1.Type.Elem().PtrTo()) tmp := nod(OSPTR, l1, nil) nodes = append(nodes, nod(OAS, l1ptr, tmp)) // sptr := &s[0] sptr := temp(elemtype.PtrTo()) tmp = nod(OSPTR, s, nil) nodes = append(nodes, nod(OAS, sptr, tmp)) // hp := &s[len(l1)] hp := nod(OINDEX, s, nod(OLEN, l1, nil)) hp.SetBounded(true) hp = nod(OADDR, hp, nil) hp = convnop(hp, types.Types[TUNSAFEPTR]) // hn := l2 * sizeof(elem(s)) hn := nod(OMUL, l2, nodintconst(elemtype.Width)) hn = conv(hn, types.Types[TUINTPTR]) clrname := "memclrNoHeapPointers" hasPointers := types.Haspointers(elemtype) if hasPointers { clrname = "memclrHasPointers" Curfn.Func.setWBPos(n.Pos) } var clr Nodes clrfn := mkcall(clrname, nil, &clr, hp, hn) clr.Append(clrfn) if hasPointers { // if l1ptr == sptr nifclr := nod(OIF, nod(OEQ, l1ptr, sptr), nil) nifclr.Nbody = clr nodes = append(nodes, nifclr) } else { nodes = append(nodes, clr.Slice()...) } typecheckslice(nodes, ctxStmt) walkstmtlist(nodes) init.Append(nodes...) return s } // Rewrite append(src, x, y, z) so that any side effects in // x, y, z (including runtime panics) are evaluated in // initialization statements before the append. // For normal code generation, stop there and leave the // rest to cgen_append. // // For race detector, expand append(src, a [, b]* ) to // // init { // s := src // const argc = len(args) - 1 // if cap(s) - len(s) < argc { // s = growslice(s, len(s)+argc) // } // n := len(s) // s = s[:n+argc] // s[n] = a // s[n+1] = b // ... // } // s func walkappend(n *Node, init *Nodes, dst *Node) *Node { if !samesafeexpr(dst, n.List.First()) { n.List.SetFirst(safeexpr(n.List.First(), init)) n.List.SetFirst(walkexpr(n.List.First(), init)) } walkexprlistsafe(n.List.Slice()[1:], init) nsrc := n.List.First() // walkexprlistsafe will leave OINDEX (s[n]) alone if both s // and n are name or literal, but those may index the slice we're // modifying here. Fix explicitly. // Using cheapexpr also makes sure that the evaluation // of all arguments (and especially any panics) happen // before we begin to modify the slice in a visible way. ls := n.List.Slice()[1:] for i, n := range ls { n = cheapexpr(n, init) if !types.Identical(n.Type, nsrc.Type.Elem()) { n = assignconv(n, nsrc.Type.Elem(), "append") n = walkexpr(n, init) } ls[i] = n } argc := n.List.Len() - 1 if argc < 1 { return nsrc } // General case, with no function calls left as arguments. // Leave for gen, except that instrumentation requires old form. if !instrumenting || compiling_runtime { return n } var l []*Node ns := temp(nsrc.Type) l = append(l, nod(OAS, ns, nsrc)) // s = src na := nodintconst(int64(argc)) // const argc nx := nod(OIF, nil, nil) // if cap(s) - len(s) < argc nx.Left = nod(OLT, nod(OSUB, nod(OCAP, ns, nil), nod(OLEN, ns, nil)), na) fn := syslook("growslice") // growslice(, old []T, mincap int) (ret []T) fn = substArgTypes(fn, ns.Type.Elem(), ns.Type.Elem()) nx.Nbody.Set1(nod(OAS, ns, mkcall1(fn, ns.Type, &nx.Ninit, typename(ns.Type.Elem()), ns, nod(OADD, nod(OLEN, ns, nil), na)))) l = append(l, nx) nn := temp(types.Types[TINT]) l = append(l, nod(OAS, nn, nod(OLEN, ns, nil))) // n = len(s) nx = nod(OSLICE, ns, nil) // ...s[:n+argc] nx.SetSliceBounds(nil, nod(OADD, nn, na), nil) nx.SetBounded(true) l = append(l, nod(OAS, ns, nx)) // s = s[:n+argc] ls = n.List.Slice()[1:] for i, n := range ls { nx = nod(OINDEX, ns, nn) // s[n] ... nx.SetBounded(true) l = append(l, nod(OAS, nx, n)) // s[n] = arg if i+1 < len(ls) { l = append(l, nod(OAS, nn, nod(OADD, nn, nodintconst(1)))) // n = n + 1 } } typecheckslice(l, ctxStmt) walkstmtlist(l) init.Append(l...) return ns } // start-prepend-header // walkprepend rewrites the builtin prepend(elem, slice) to // // init { // dest := make([], 1, len(slice)+1) // dest[0] = elem // append(dest, slice...) // } // dest // func walkprepend(n *Node, init *Nodes) *Node { // end-prepend-header tail := temp(n.Right.Type) var l []*Node l = append(l, nod(OAS, tail, n.Right)) // length is always one, the element that is prepended makeLen := nodintconst(1) // len = 1 makeCap := nod(OADD, nodintconst(1), nod(OLEN, tail, nil)) // cap = len(tail) + 1 // get the type of the tail makeType := nod(OTYPE, nil, nil) makeType.Type = tail.Type makeDest := nod(OMAKE, nil, nil) makeDest.List = asNodes([]*Node{makeType, makeLen, makeCap}) // make([], 1, len(tail) + 1) // create the destination slice ndst := temp(tail.Type) l = append(l, nod(OAS, ndst, makeDest)) // ndst = make([]T, 1, len(tail)+ 1) l = append(l, nod(OAS, nod(OINDEX, ndst, nodintconst(0)), n.Left)) // ndst[0] = x // type check and walk everything typecheckslice(l, ctxStmt) walkstmtlist(l) init.Append(l...) a := nod(OAPPEND, nil, nil) a.List = asNodes([]*Node{ndst, tail}) return appendslice(a, init) // append(ndst, tail) } // walkfmap rewrites the builtin fmap(f(in) out, []slice) to // // init { // dst = make([]out, len(slice)) // for i, e := range slice { // dst[i] = f(e) // } // } // dst // // START OMIT // walkfmap rewrites the builtin fmap(f(in) out, []slice) to func walkfmap(n *Node, init *Nodes) *Node { mapFunc := n.Left source := n.Right makeLen := nod(OLEN, source, nil) // len = len(src) makeType := nod(OTYPE, nil, nil) makeDest := nod(OMAKE, nil, nil) // get the result type of the mapping function destType := types.NewSlice( mapFunc.Type.Results().Fields().Index(0).Type, ) makeType.Type = destType makeDest.List.Append(makeType, makeLen) // make([], len(src)) // create the destination slice / map ndst := temp(destType) makeNode := nod(OAS, ndst, makeDest) // ndst = make([], len(src)) // END OMIT // for idx := range source { // ndst[idx] = fn(source[idx]) // } ran := nod(ORANGE, nil, source) ran.SetColas(true) ni := temp(types.Types[TINT]) ni.Name.Defn = ran ni.Type = types.Types[TINT] ran.Ninit.Append(nod(ODCL, ni, nil)) ran.List.Set1(ni) nx := nod(OINDEX, source, ni) nx.SetBounded(true) funCall := nod(OCALL, mapFunc, nil) funCall.List.Set1(nx) ran.Nbody.Append(nod(OAS, nod(OINDEX, ndst, ni), funCall)) l = append(l, ran) typecheckslice(l, ctxStmt) walkstmtlist(l) init.Append(l...) return ndst } // start-fold-header // walkfold rewrites the builtin fold function. For the right fold: // foldr(f(T1, T2) T2, a T2, s []T1) T2 // // init { // acc = a // for i := len(s) - 1; i >= 0; i-- { // acc = f(s[i], acc) // } // } // acc // // And the left fold: // foldl(f(T2, T1) T2, a T2, s []T1) T2 // // init { // acc = a // for i := 0; i < len(s); i++ { // acc = f(acc, s[i]) // } // } // acc func walkfold(n *Node, init *Nodes, isRight bool) *Node { // end-fold-header f := n.List.First() s := n.List.Index(2) if f.Op == OCLOSURE { f = walkclosure(f, init) } var l []*Node acc := temp(n.List.Second().Type) l = append(l, nod(OAS, acc, n.List.Second())) // var i int ni := temp(types.Types[TINT]) // f(s[i]) call := nod(OCALL, f, nil) idx := nod(OINDEX, s, ni) idx.SetBounded(true) var ninit, cond, post *Node if isRight { // i = len(s) -1; i >= 0; i = i -1 ninit = nod(OAS, ni, nod(OSUB, nod(OLEN, s, nil), nodintconst(1))) cond = nod(OGE, ni, nodintconst(0)) post = nod(OAS, ni, nod(OSUB, ni, nodintconst(1))) call.List.Append(idx, acc) } else { // i = 0; i < len(s); i = i + 1 ninit = nod(OAS, ni, nodintconst(0)) cond = nod(OLT, ni, nod(OLEN, s, nil)) post = nod(OAS, ni, nod(OADD, ni, nodintconst(1))) call.List.Append(acc, idx) } body := nod(OAS, acc, call) loop := nod(OFOR, cond, post) loop.Ninit.Set1(ninit) loop.Nbody.Set1(body) l = append(l, loop) typecheckslice(l, ctxStmt) walkstmtlist(l) init.Append(l...) return acc } // start-filter-header // walkfilter rewrites the builtin filter function. // filter(f(T) bool, slice []T) []T // // init { // dst = make([]out, 0) // for i, e := range slice { // if f(slice[i]) { // dst = append(dst, slice[i]) // } // } // } // dst // func walkfilter(n *Node, init *Nodes) *Node { // end-filter-header source := n.Right var l []*Node // filter algorithm: // func filter(f func(int) bool, s []int) []int { // filtered := make([]int, 0)) // for i := range s { // if f(s[i]) { // filtered = append(filtered, s[i]) // } // } // } // get the result type of the mapping function makeType := nod(OTYPE, nil, nil) makeType.Type = source.Type makeDest := nod(OMAKE, nil, nil) makeDest.List.Append(makeType, nodintconst(0)) // make([], len(src)) // create the destination slice / map filtered := temp(source.Type) l = append(l, nod(OAS, filtered, makeDest)) // ndst = make([], len(src)) // for idx := range source { // if f(s[i]) { // filtered = append(filtered, s[i]) // } // } ran := nod(ORANGE, nil, source) ran.SetColas(true) ni := temp(types.Types[TINT]) ni.Name.Defn = ran ni.Type = types.Types[TINT] ran.Ninit.Append(nod(ODCL, ni, nil)) ran.List.Set1(ni) nx := nod(OINDEX, source, ni) nx.SetBounded(true) if n.Left.Op == OCLOSURE { n.Left = walkclosure(n.Left, init) } funCall := nod(OCALL, n.Left, nil) funCall.List.Set1(nod(OINDEX, source, ni)) ifStmt := nod(OIF, nod(OEQ, funCall, nodbool(true)), nil) a := nod(OAPPEND, nil, nil) a.List = asNodes([]*Node{filtered, nx}) ifStmt.Nbody.Append(nod(OAS, filtered, a)) ran.Nbody.Append( ifStmt, ) l = append(l, ran) typecheckslice(l, ctxStmt) walkstmtlist(l) init.Append(l...) return filtered } // Lower copy(a, b) to a memmove call or a runtime call. // // init { // n := len(a) // if n > len(b) { n = len(b) } // if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) } // } // n; // // Also works if b is a string. // func copyany(n *Node, init *Nodes, runtimecall bool) *Node { if n.Left.Type.Elem().HasHeapPointer() { Curfn.Func.setWBPos(n.Pos) fn := writebarrierfn("typedslicecopy", n.Left.Type, n.Right.Type) return mkcall1(fn, n.Type, init, typename(n.Left.Type.Elem()), n.Left, n.Right) } if runtimecall { if n.Right.Type.IsString() { fn := syslook("slicestringcopy") fn = substArgTypes(fn, n.Left.Type, n.Right.Type) return mkcall1(fn, n.Type, init, n.Left, n.Right) } fn := syslook("slicecopy") fn = substArgTypes(fn, n.Left.Type, n.Right.Type) return mkcall1(fn, n.Type, init, n.Left, n.Right, nodintconst(n.Left.Type.Elem().Width)) } n.Left = walkexpr(n.Left, init) n.Right = walkexpr(n.Right, init) nl := temp(n.Left.Type) nr := temp(n.Right.Type) var l []*Node l = append(l, nod(OAS, nl, n.Left)) l = append(l, nod(OAS, nr, n.Right)) nfrm := nod(OSPTR, nr, nil) nto := nod(OSPTR, nl, nil) nlen := temp(types.Types[TINT]) // n = len(to) l = append(l, nod(OAS, nlen, nod(OLEN, nl, nil))) // if n > len(frm) { n = len(frm) } nif := nod(OIF, nil, nil) nif.Left = nod(OGT, nlen, nod(OLEN, nr, nil)) nif.Nbody.Append(nod(OAS, nlen, nod(OLEN, nr, nil))) l = append(l, nif) // if to.ptr != frm.ptr { memmove( ... ) } ne := nod(OIF, nod(ONE, nto, nfrm), nil) ne.SetLikely(true) l = append(l, ne) fn := syslook("memmove") fn = substArgTypes(fn, nl.Type.Elem(), nl.Type.Elem()) nwid := temp(types.Types[TUINTPTR]) setwid := nod(OAS, nwid, conv(nlen, types.Types[TUINTPTR])) ne.Nbody.Append(setwid) nwid = nod(OMUL, nwid, nodintconst(nl.Type.Elem().Width)) call := mkcall1(fn, nil, init, nto, nfrm, nwid) ne.Nbody.Append(call) typecheckslice(l, ctxStmt) walkstmtlist(l) init.Append(l...) return nlen } func eqfor(t *types.Type) (n *Node, needsize bool) { // Should only arrive here with large memory or // a struct/array containing a non-memory field/element. // Small memory is handled inline, and single non-memory // is handled by walkcompare. switch a, _ := algtype1(t); a { case AMEM: n := syslook("memequal") n = substArgTypes(n, t, t) return n, true case ASPECIAL: sym := typesymprefix(".eq", t) n := newname(sym) n.SetClass(PFUNC) n.Sym.SetFunc(true) n.Type = functype(nil, []*Node{ anonfield(types.NewPtr(t)), anonfield(types.NewPtr(t)), }, []*Node{ anonfield(types.Types[TBOOL]), }) return n, false } Fatalf("eqfor %v", t) return nil, false } // The result of walkcompare MUST be assigned back to n, e.g. // n.Left = walkcompare(n.Left, init) func walkcompare(n *Node, init *Nodes) *Node { if n.Left.Type.IsInterface() && n.Right.Type.IsInterface() && n.Left.Op != OLITERAL && n.Right.Op != OLITERAL { return walkcompareInterface(n, init) } if n.Left.Type.IsString() && n.Right.Type.IsString() { return walkcompareString(n, init) } n.Left = walkexpr(n.Left, init) n.Right = walkexpr(n.Right, init) // Given mixed interface/concrete comparison, // rewrite into types-equal && data-equal. // This is efficient, avoids allocations, and avoids runtime calls. if n.Left.Type.IsInterface() != n.Right.Type.IsInterface() { // Preserve side-effects in case of short-circuiting; see #32187. l := cheapexpr(n.Left, init) r := cheapexpr(n.Right, init) // Swap so that l is the interface value and r is the concrete value. if n.Right.Type.IsInterface() { l, r = r, l } // Handle both == and !=. eq := n.Op andor := OOROR if eq == OEQ { andor = OANDAND } // Check for types equal. // For empty interface, this is: // l.tab == type(r) // For non-empty interface, this is: // l.tab != nil && l.tab._type == type(r) var eqtype *Node tab := nod(OITAB, l, nil) rtyp := typename(r.Type) if l.Type.IsEmptyInterface() { tab.Type = types.NewPtr(types.Types[TUINT8]) tab.SetTypecheck(1) eqtype = nod(eq, tab, rtyp) } else { nonnil := nod(brcom(eq), nodnil(), tab) match := nod(eq, itabType(tab), rtyp) eqtype = nod(andor, nonnil, match) } // Check for data equal. eqdata := nod(eq, ifaceData(l, r.Type), r) // Put it all together. expr := nod(andor, eqtype, eqdata) n = finishcompare(n, expr, init) return n } // Must be comparison of array or struct. // Otherwise back end handles it. // While we're here, decide whether to // inline or call an eq alg. t := n.Left.Type var inline bool maxcmpsize := int64(4) unalignedLoad := canMergeLoads() if unalignedLoad { // Keep this low enough to generate less code than a function call. maxcmpsize = 2 * int64(thearch.LinkArch.RegSize) } switch t.Etype { default: if Debug_libfuzzer != 0 && t.IsInteger() { n.Left = cheapexpr(n.Left, init) n.Right = cheapexpr(n.Right, init) // If exactly one comparison operand is // constant, invoke the constcmp functions // instead, and arrange for the constant // operand to be the first argument. l, r := n.Left, n.Right if r.Op == OLITERAL { l, r = r, l } constcmp := l.Op == OLITERAL && r.Op != OLITERAL var fn string var paramType *types.Type switch t.Size() { case 1: fn = "libfuzzerTraceCmp1" if constcmp { fn = "libfuzzerTraceConstCmp1" } paramType = types.Types[TUINT8] case 2: fn = "libfuzzerTraceCmp2" if constcmp { fn = "libfuzzerTraceConstCmp2" } paramType = types.Types[TUINT16] case 4: fn = "libfuzzerTraceCmp4" if constcmp { fn = "libfuzzerTraceConstCmp4" } paramType = types.Types[TUINT32] case 8: fn = "libfuzzerTraceCmp8" if constcmp { fn = "libfuzzerTraceConstCmp8" } paramType = types.Types[TUINT64] default: Fatalf("unexpected integer size %d for %v", t.Size(), t) } init.Append(mkcall(fn, nil, init, tracecmpArg(l, paramType, init), tracecmpArg(r, paramType, init))) } return n case TARRAY: // We can compare several elements at once with 2/4/8 byte integer compares inline = t.NumElem() <= 1 || (issimple[t.Elem().Etype] && (t.NumElem() <= 4 || t.Elem().Width*t.NumElem() <= maxcmpsize)) case TSTRUCT: inline = t.NumComponents(types.IgnoreBlankFields) <= 4 } cmpl := n.Left for cmpl != nil && cmpl.Op == OCONVNOP { cmpl = cmpl.Left } cmpr := n.Right for cmpr != nil && cmpr.Op == OCONVNOP { cmpr = cmpr.Left } // Chose not to inline. Call equality function directly. if !inline { // eq algs take pointers; cmpl and cmpr must be addressable if !islvalue(cmpl) || !islvalue(cmpr) { Fatalf("arguments of comparison must be lvalues - %v %v", cmpl, cmpr) } fn, needsize := eqfor(t) call := nod(OCALL, fn, nil) call.List.Append(nod(OADDR, cmpl, nil)) call.List.Append(nod(OADDR, cmpr, nil)) if needsize { call.List.Append(nodintconst(t.Width)) } res := call if n.Op != OEQ { res = nod(ONOT, res, nil) } n = finishcompare(n, res, init) return n } // inline: build boolean expression comparing element by element andor := OANDAND if n.Op == ONE { andor = OOROR } var expr *Node compare := func(el, er *Node) { a := nod(n.Op, el, er) if expr == nil { expr = a } else { expr = nod(andor, expr, a) } } cmpl = safeexpr(cmpl, init) cmpr = safeexpr(cmpr, init) if t.IsStruct() { for _, f := range t.Fields().Slice() { sym := f.Sym if sym.IsBlank() { continue } compare( nodSym(OXDOT, cmpl, sym), nodSym(OXDOT, cmpr, sym), ) } } else { step := int64(1) remains := t.NumElem() * t.Elem().Width combine64bit := unalignedLoad && Widthreg == 8 && t.Elem().Width <= 4 && t.Elem().IsInteger() combine32bit := unalignedLoad && t.Elem().Width <= 2 && t.Elem().IsInteger() combine16bit := unalignedLoad && t.Elem().Width == 1 && t.Elem().IsInteger() for i := int64(0); remains > 0; { var convType *types.Type switch { case remains >= 8 && combine64bit: convType = types.Types[TINT64] step = 8 / t.Elem().Width case remains >= 4 && combine32bit: convType = types.Types[TUINT32] step = 4 / t.Elem().Width case remains >= 2 && combine16bit: convType = types.Types[TUINT16] step = 2 / t.Elem().Width default: step = 1 } if step == 1 { compare( nod(OINDEX, cmpl, nodintconst(i)), nod(OINDEX, cmpr, nodintconst(i)), ) i++ remains -= t.Elem().Width } else { elemType := t.Elem().ToUnsigned() cmplw := nod(OINDEX, cmpl, nodintconst(i)) cmplw = conv(cmplw, elemType) // convert to unsigned cmplw = conv(cmplw, convType) // widen cmprw := nod(OINDEX, cmpr, nodintconst(i)) cmprw = conv(cmprw, elemType) cmprw = conv(cmprw, convType) // For code like this: uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ... // ssa will generate a single large load. for offset := int64(1); offset < step; offset++ { lb := nod(OINDEX, cmpl, nodintconst(i+offset)) lb = conv(lb, elemType) lb = conv(lb, convType) lb = nod(OLSH, lb, nodintconst(8*t.Elem().Width*offset)) cmplw = nod(OOR, cmplw, lb) rb := nod(OINDEX, cmpr, nodintconst(i+offset)) rb = conv(rb, elemType) rb = conv(rb, convType) rb = nod(OLSH, rb, nodintconst(8*t.Elem().Width*offset)) cmprw = nod(OOR, cmprw, rb) } compare(cmplw, cmprw) i += step remains -= step * t.Elem().Width } } } if expr == nil { expr = nodbool(n.Op == OEQ) // We still need to use cmpl and cmpr, in case they contain // an expression which might panic. See issue 23837. t := temp(cmpl.Type) a1 := nod(OAS, t, cmpl) a1 = typecheck(a1, ctxStmt) a2 := nod(OAS, t, cmpr) a2 = typecheck(a2, ctxStmt) init.Append(a1, a2) } n = finishcompare(n, expr, init) return n } func tracecmpArg(n *Node, t *types.Type, init *Nodes) *Node { // Ugly hack to avoid "constant -1 overflows uintptr" errors, etc. if n.Op == OLITERAL && n.Type.IsSigned() && n.Int64() < 0 { n = copyexpr(n, n.Type, init) } return conv(n, t) } func walkcompareInterface(n *Node, init *Nodes) *Node { // ifaceeq(i1 any-1, i2 any-2) (ret bool); if !types.Identical(n.Left.Type, n.Right.Type) { Fatalf("ifaceeq %v %v %v", n.Op, n.Left.Type, n.Right.Type) } var fn *Node if n.Left.Type.IsEmptyInterface() { fn = syslook("efaceeq") } else { fn = syslook("ifaceeq") } n.Right = cheapexpr(n.Right, init) n.Left = cheapexpr(n.Left, init) lt := nod(OITAB, n.Left, nil) rt := nod(OITAB, n.Right, nil) ld := nod(OIDATA, n.Left, nil) rd := nod(OIDATA, n.Right, nil) ld.Type = types.Types[TUNSAFEPTR] rd.Type = types.Types[TUNSAFEPTR] ld.SetTypecheck(1) rd.SetTypecheck(1) call := mkcall1(fn, n.Type, init, lt, ld, rd) // Check itable/type before full compare. // Note: short-circuited because order matters. var cmp *Node if n.Op == OEQ { cmp = nod(OANDAND, nod(OEQ, lt, rt), call) } else { cmp = nod(OOROR, nod(ONE, lt, rt), nod(ONOT, call, nil)) } return finishcompare(n, cmp, init) } func walkcompareString(n *Node, init *Nodes) *Node { // Rewrite comparisons to short constant strings as length+byte-wise comparisons. var cs, ncs *Node // const string, non-const string switch { case Isconst(n.Left, CTSTR) && Isconst(n.Right, CTSTR): // ignore; will be constant evaluated case Isconst(n.Left, CTSTR): cs = n.Left ncs = n.Right case Isconst(n.Right, CTSTR): cs = n.Right ncs = n.Left } if cs != nil { cmp := n.Op // Our comparison below assumes that the non-constant string // is on the left hand side, so rewrite "" cmp x to x cmp "". // See issue 24817. if Isconst(n.Left, CTSTR) { cmp = brrev(cmp) } // maxRewriteLen was chosen empirically. // It is the value that minimizes cmd/go file size // across most architectures. // See the commit description for CL 26758 for details. maxRewriteLen := 6 // Some architectures can load unaligned byte sequence as 1 word. // So we can cover longer strings with the same amount of code. canCombineLoads := canMergeLoads() combine64bit := false if canCombineLoads { // Keep this low enough to generate less code than a function call. maxRewriteLen = 2 * thearch.LinkArch.RegSize combine64bit = thearch.LinkArch.RegSize >= 8 } var and Op switch cmp { case OEQ: and = OANDAND case ONE: and = OOROR default: // Don't do byte-wise comparisons for <, <=, etc. // They're fairly complicated. // Length-only checks are ok, though. maxRewriteLen = 0 } if s := strlit(cs); len(s) <= maxRewriteLen { if len(s) > 0 { ncs = safeexpr(ncs, init) } r := nod(cmp, nod(OLEN, ncs, nil), nodintconst(int64(len(s)))) remains := len(s) for i := 0; remains > 0; { if remains == 1 || !canCombineLoads { cb := nodintconst(int64(s[i])) ncb := nod(OINDEX, ncs, nodintconst(int64(i))) r = nod(and, r, nod(cmp, ncb, cb)) remains-- i++ continue } var step int var convType *types.Type switch { case remains >= 8 && combine64bit: convType = types.Types[TINT64] step = 8 case remains >= 4: convType = types.Types[TUINT32] step = 4 case remains >= 2: convType = types.Types[TUINT16] step = 2 } ncsubstr := nod(OINDEX, ncs, nodintconst(int64(i))) ncsubstr = conv(ncsubstr, convType) csubstr := int64(s[i]) // Calculate large constant from bytes as sequence of shifts and ors. // Like this: uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ... // ssa will combine this into a single large load. for offset := 1; offset < step; offset++ { b := nod(OINDEX, ncs, nodintconst(int64(i+offset))) b = conv(b, convType) b = nod(OLSH, b, nodintconst(int64(8*offset))) ncsubstr = nod(OOR, ncsubstr, b) csubstr |= int64(s[i+offset]) << uint8(8*offset) } csubstrPart := nodintconst(csubstr) // Compare "step" bytes as once r = nod(and, r, nod(cmp, csubstrPart, ncsubstr)) remains -= step i += step } return finishcompare(n, r, init) } } var r *Node if n.Op == OEQ || n.Op == ONE { // prepare for rewrite below n.Left = cheapexpr(n.Left, init) n.Right = cheapexpr(n.Right, init) lstr := conv(n.Left, types.Types[TSTRING]) rstr := conv(n.Right, types.Types[TSTRING]) lptr := nod(OSPTR, lstr, nil) rptr := nod(OSPTR, rstr, nil) llen := conv(nod(OLEN, lstr, nil), types.Types[TUINTPTR]) rlen := conv(nod(OLEN, rstr, nil), types.Types[TUINTPTR]) fn := syslook("memequal") fn = substArgTypes(fn, types.Types[TUINT8], types.Types[TUINT8]) r = mkcall1(fn, types.Types[TBOOL], init, lptr, rptr, llen) // quick check of len before full compare for == or !=. // memequal then tests equality up to length len. if n.Op == OEQ { // len(left) == len(right) && memequal(left, right, len) r = nod(OANDAND, nod(OEQ, llen, rlen), r) } else { // len(left) != len(right) || !memequal(left, right, len) r = nod(ONOT, r, nil) r = nod(OOROR, nod(ONE, llen, rlen), r) } } else { // sys_cmpstring(s1, s2) :: 0 r = mkcall("cmpstring", types.Types[TINT], init, conv(n.Left, types.Types[TSTRING]), conv(n.Right, types.Types[TSTRING])) r = nod(n.Op, r, nodintconst(0)) } return finishcompare(n, r, init) } // The result of finishcompare MUST be assigned back to n, e.g. // n.Left = finishcompare(n.Left, x, r, init) func finishcompare(n, r *Node, init *Nodes) *Node { r = typecheck(r, ctxExpr) r = conv(r, n.Type) r = walkexpr(r, init) return r } // isIntOrdering reports whether n is a <, ≤, >, or ≥ ordering between integers. func (n *Node) isIntOrdering() bool { switch n.Op { case OLE, OLT, OGE, OGT: default: return false } return n.Left.Type.IsInteger() && n.Right.Type.IsInteger() } // walkinrange optimizes integer-in-range checks, such as 4 <= x && x < 10. // n must be an OANDAND or OOROR node. // The result of walkinrange MUST be assigned back to n, e.g. // n.Left = walkinrange(n.Left) func walkinrange(n *Node, init *Nodes) *Node { // We are looking for something equivalent to a opl b OP b opr c, where: // * a, b, and c have integer type // * b is side-effect-free // * opl and opr are each < or ≤ // * OP is && l := n.Left r := n.Right if !l.isIntOrdering() || !r.isIntOrdering() { return n } // Find b, if it exists, and rename appropriately. // Input is: l.Left l.Op l.Right ANDAND/OROR r.Left r.Op r.Right // Output is: a opl b(==x) ANDAND/OROR b(==x) opr c a, opl, b := l.Left, l.Op, l.Right x, opr, c := r.Left, r.Op, r.Right for i := 0; ; i++ { if samesafeexpr(b, x) { break } if i == 3 { // Tried all permutations and couldn't find an appropriate b == x. return n } if i&1 == 0 { a, opl, b = b, brrev(opl), a } else { x, opr, c = c, brrev(opr), x } } // If n.Op is ||, apply de Morgan. // Negate the internal ops now; we'll negate the top level op at the end. // Henceforth assume &&. negateResult := n.Op == OOROR if negateResult { opl = brcom(opl) opr = brcom(opr) } cmpdir := func(o Op) int { switch o { case OLE, OLT: return -1 case OGE, OGT: return +1 } Fatalf("walkinrange cmpdir %v", o) return 0 } if cmpdir(opl) != cmpdir(opr) { // Not a range check; something like b < a && b < c. return n } switch opl { case OGE, OGT: // We have something like a > b && b ≥ c. // Switch and reverse ops and rename constants, // to make it look like a ≤ b && b < c. a, c = c, a opl, opr = brrev(opr), brrev(opl) } // We must ensure that c-a is non-negative. // For now, require a and c to be constants. // In the future, we could also support a == 0 and c == len/cap(...). // Unfortunately, by this point, most len/cap expressions have been // stored into temporary variables. if !Isconst(a, CTINT) || !Isconst(c, CTINT) { return n } // Ensure that Int64() does not overflow on a and c (it'll happen // for any const above 2**63; see issue #27143). if !a.CanInt64() || !c.CanInt64() { return n } if opl == OLT { // We have a < b && ... // We need a ≤ b && ... to safely use unsigned comparison tricks. // If a is not the maximum constant for b's type, // we can increment a and switch to ≤. if a.Int64() >= maxintval[b.Type.Etype].Int64() { return n } a = nodintconst(a.Int64() + 1) opl = OLE } bound := c.Int64() - a.Int64() if bound < 0 { // Bad news. Something like 5 <= x && x < 3. // Rare in practice, and we still need to generate side-effects, // so just leave it alone. return n } // We have a ≤ b && b < c (or a ≤ b && b ≤ c). // This is equivalent to (a-a) ≤ (b-a) && (b-a) < (c-a), // which is equivalent to 0 ≤ (b-a) && (b-a) < (c-a), // which is equivalent to uint(b-a) < uint(c-a). ut := b.Type.ToUnsigned() lhs := conv(nod(OSUB, b, a), ut) rhs := nodintconst(bound) if negateResult { // Negate top level. opr = brcom(opr) } cmp := nod(opr, lhs, rhs) cmp.Pos = n.Pos cmp = addinit(cmp, l.Ninit.Slice()) cmp = addinit(cmp, r.Ninit.Slice()) // Typecheck the AST rooted at cmp... cmp = typecheck(cmp, ctxExpr) // ...but then reset cmp's type to match n's type. cmp.Type = n.Type cmp = walkexpr(cmp, init) return cmp } // return 1 if integer n must be in range [0, max), 0 otherwise func bounded(n *Node, max int64) bool { if n.Type == nil || !n.Type.IsInteger() { return false } sign := n.Type.IsSigned() bits := int32(8 * n.Type.Width) if smallintconst(n) { v := n.Int64() return 0 <= v && v < max } switch n.Op { case OAND: v := int64(-1) if smallintconst(n.Left) { v = n.Left.Int64() } else if smallintconst(n.Right) { v = n.Right.Int64() } if 0 <= v && v < max { return true } case OMOD: if !sign && smallintconst(n.Right) { v := n.Right.Int64() if 0 <= v && v <= max { return true } } case ODIV: if !sign && smallintconst(n.Right) { v := n.Right.Int64() for bits > 0 && v >= 2 { bits-- v >>= 1 } } case ORSH: if !sign && smallintconst(n.Right) { v := n.Right.Int64() if v > int64(bits) { return true } bits -= int32(v) } } if !sign && bits <= 62 && 1< 0 { Fatalf("substArgTypes: too many argument types") } return n } // canMergeLoads reports whether the backend optimization passes for // the current architecture can combine adjacent loads into a single // larger, possibly unaligned, load. Note that currently the // optimizations must be able to handle little endian byte order. func canMergeLoads() bool { switch thearch.LinkArch.Family { case sys.ARM64, sys.AMD64, sys.I386, sys.S390X: return true case sys.PPC64: // Load combining only supported on ppc64le. return thearch.LinkArch.ByteOrder == binary.LittleEndian } return false } // isRuneCount reports whether n is of the form len([]rune(string)). // These are optimized into a call to runtime.countrunes. func isRuneCount(n *Node) bool { return Debug['N'] == 0 && !instrumenting && n.Op == OLEN && n.Left.Op == OSTR2RUNES } func walkCheckPtrAlignment(n *Node, init *Nodes, count *Node) *Node { if !n.Type.IsPtr() { Fatalf("expected pointer type: %v", n.Type) } elem := n.Type.Elem() if count != nil { if !elem.IsArray() { Fatalf("expected array type: %v", elem) } elem = elem.Elem() } size := elem.Size() if elem.Alignment() == 1 && (size == 0 || size == 1 && count == nil) { return n } if count == nil { count = nodintconst(1) } n.Left = cheapexpr(n.Left, init) init.Append(mkcall("checkptrAlignment", nil, init, convnop(n.Left, types.Types[TUNSAFEPTR]), typename(elem), conv(count, types.Types[TUINTPTR]))) return n } var walkCheckPtrArithmeticMarker byte func walkCheckPtrArithmetic(n *Node, init *Nodes) *Node { // Calling cheapexpr(n, init) below leads to a recursive call // to walkexpr, which leads us back here again. Use n.Opt to // prevent infinite loops. if opt := n.Opt(); opt == &walkCheckPtrArithmeticMarker { return n } else if opt != nil { // We use n.Opt() here because today it's not used for OCONVNOP. If that changes, // there's no guarantee that temporarily replacing it is safe, so just hard fail here. Fatalf("unexpected Opt: %v", opt) } n.SetOpt(&walkCheckPtrArithmeticMarker) defer n.SetOpt(nil) // TODO(mdempsky): Make stricter. We only need to exempt // reflect.Value.Pointer and reflect.Value.UnsafeAddr. switch n.Left.Op { case OCALLFUNC, OCALLMETH, OCALLINTER: return n } if n.Left.Op == ODOTPTR && isReflectHeaderDataField(n.Left) { return n } // Find original unsafe.Pointer operands involved in this // arithmetic expression. // // "It is valid both to add and to subtract offsets from a // pointer in this way. It is also valid to use &^ to round // pointers, usually for alignment." var originals []*Node var walk func(n *Node) walk = func(n *Node) { switch n.Op { case OADD: walk(n.Left) walk(n.Right) case OSUB, OANDNOT: walk(n.Left) case OCONVNOP: if n.Left.Type.Etype == TUNSAFEPTR { n.Left = cheapexpr(n.Left, init) originals = append(originals, convnop(n.Left, types.Types[TUNSAFEPTR])) } } } walk(n.Left) n = cheapexpr(n, init) ddd := nodl(n.Pos, ODDDARG, nil, nil) ddd.Type = types.NewPtr(types.NewArray(types.Types[TUNSAFEPTR], int64(len(originals)))) ddd.Esc = EscNone slice := mkdotargslice(types.NewSlice(types.Types[TUNSAFEPTR]), originals, init, ddd) init.Append(mkcall("checkptrArithmetic", nil, init, convnop(n, types.Types[TUNSAFEPTR]), slice)) // TODO(khr): Mark backing store of slice as dead. This will allow us to reuse // the backing store for multiple calls to checkptrArithmetic. return n } // checkPtr reports whether pointer checking should be enabled for // function fn at a given level. See debugHelpFooter for defined // levels. func checkPtr(fn *Node, level int) bool { return Debug_checkptr >= level && fn.Func.Pragma&NoCheckPtr == 0 }